x uchun yechish
x = \frac{\sqrt{145605} + 379}{2} \approx 380,291116145
x=\frac{379-\sqrt{145605}}{2}\approx -1,291116145
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-379x-188=303
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-379x-188-303=303-303
Tenglamaning ikkala tarafidan 303 ni ayirish.
x^{2}-379x-188-303=0
O‘zidan 303 ayirilsa 0 qoladi.
x^{2}-379x-491=0
-188 dan 303 ni ayirish.
x=\frac{-\left(-379\right)±\sqrt{\left(-379\right)^{2}-4\left(-491\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -379 ni b va -491 ni c bilan almashtiring.
x=\frac{-\left(-379\right)±\sqrt{143641-4\left(-491\right)}}{2}
-379 kvadratini chiqarish.
x=\frac{-\left(-379\right)±\sqrt{143641+1964}}{2}
-4 ni -491 marotabaga ko'paytirish.
x=\frac{-\left(-379\right)±\sqrt{145605}}{2}
143641 ni 1964 ga qo'shish.
x=\frac{379±\sqrt{145605}}{2}
-379 ning teskarisi 379 ga teng.
x=\frac{\sqrt{145605}+379}{2}
x=\frac{379±\sqrt{145605}}{2} tenglamasini yeching, bunda ± musbat. 379 ni \sqrt{145605} ga qo'shish.
x=\frac{379-\sqrt{145605}}{2}
x=\frac{379±\sqrt{145605}}{2} tenglamasini yeching, bunda ± manfiy. 379 dan \sqrt{145605} ni ayirish.
x=\frac{\sqrt{145605}+379}{2} x=\frac{379-\sqrt{145605}}{2}
Tenglama yechildi.
x^{2}-379x-188=303
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-379x-188-\left(-188\right)=303-\left(-188\right)
188 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-379x=303-\left(-188\right)
O‘zidan -188 ayirilsa 0 qoladi.
x^{2}-379x=491
303 dan -188 ni ayirish.
x^{2}-379x+\left(-\frac{379}{2}\right)^{2}=491+\left(-\frac{379}{2}\right)^{2}
-379 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{379}{2} olish uchun. Keyin, -\frac{379}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-379x+\frac{143641}{4}=491+\frac{143641}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{379}{2} kvadratini chiqarish.
x^{2}-379x+\frac{143641}{4}=\frac{145605}{4}
491 ni \frac{143641}{4} ga qo'shish.
\left(x-\frac{379}{2}\right)^{2}=\frac{145605}{4}
x^{2}-379x+\frac{143641}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{379}{2}\right)^{2}}=\sqrt{\frac{145605}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{379}{2}=\frac{\sqrt{145605}}{2} x-\frac{379}{2}=-\frac{\sqrt{145605}}{2}
Qisqartirish.
x=\frac{\sqrt{145605}+379}{2} x=\frac{379-\sqrt{145605}}{2}
\frac{379}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}