Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-379x-188=303
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-379x-188-303=303-303
Tenglamaning ikkala tarafidan 303 ni ayirish.
x^{2}-379x-188-303=0
O‘zidan 303 ayirilsa 0 qoladi.
x^{2}-379x-491=0
-188 dan 303 ni ayirish.
x=\frac{-\left(-379\right)±\sqrt{\left(-379\right)^{2}-4\left(-491\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -379 ni b va -491 ni c bilan almashtiring.
x=\frac{-\left(-379\right)±\sqrt{143641-4\left(-491\right)}}{2}
-379 kvadratini chiqarish.
x=\frac{-\left(-379\right)±\sqrt{143641+1964}}{2}
-4 ni -491 marotabaga ko'paytirish.
x=\frac{-\left(-379\right)±\sqrt{145605}}{2}
143641 ni 1964 ga qo'shish.
x=\frac{379±\sqrt{145605}}{2}
-379 ning teskarisi 379 ga teng.
x=\frac{\sqrt{145605}+379}{2}
x=\frac{379±\sqrt{145605}}{2} tenglamasini yeching, bunda ± musbat. 379 ni \sqrt{145605} ga qo'shish.
x=\frac{379-\sqrt{145605}}{2}
x=\frac{379±\sqrt{145605}}{2} tenglamasini yeching, bunda ± manfiy. 379 dan \sqrt{145605} ni ayirish.
x=\frac{\sqrt{145605}+379}{2} x=\frac{379-\sqrt{145605}}{2}
Tenglama yechildi.
x^{2}-379x-188=303
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-379x-188-\left(-188\right)=303-\left(-188\right)
188 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-379x=303-\left(-188\right)
O‘zidan -188 ayirilsa 0 qoladi.
x^{2}-379x=491
303 dan -188 ni ayirish.
x^{2}-379x+\left(-\frac{379}{2}\right)^{2}=491+\left(-\frac{379}{2}\right)^{2}
-379 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{379}{2} olish uchun. Keyin, -\frac{379}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-379x+\frac{143641}{4}=491+\frac{143641}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{379}{2} kvadratini chiqarish.
x^{2}-379x+\frac{143641}{4}=\frac{145605}{4}
491 ni \frac{143641}{4} ga qo'shish.
\left(x-\frac{379}{2}\right)^{2}=\frac{145605}{4}
x^{2}-379x+\frac{143641}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{379}{2}\right)^{2}}=\sqrt{\frac{145605}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{379}{2}=\frac{\sqrt{145605}}{2} x-\frac{379}{2}=-\frac{\sqrt{145605}}{2}
Qisqartirish.
x=\frac{\sqrt{145605}+379}{2} x=\frac{379-\sqrt{145605}}{2}
\frac{379}{2} ni tenglamaning ikkala tarafiga qo'shish.