x uchun yechish
x=18\sqrt{110}+180\approx 368,785592671
x=180-18\sqrt{110}\approx -8,785592671
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-360x-3240=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-360\right)±\sqrt{\left(-360\right)^{2}-4\left(-3240\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -360 ni b va -3240 ni c bilan almashtiring.
x=\frac{-\left(-360\right)±\sqrt{129600-4\left(-3240\right)}}{2}
-360 kvadratini chiqarish.
x=\frac{-\left(-360\right)±\sqrt{129600+12960}}{2}
-4 ni -3240 marotabaga ko'paytirish.
x=\frac{-\left(-360\right)±\sqrt{142560}}{2}
129600 ni 12960 ga qo'shish.
x=\frac{-\left(-360\right)±36\sqrt{110}}{2}
142560 ning kvadrat ildizini chiqarish.
x=\frac{360±36\sqrt{110}}{2}
-360 ning teskarisi 360 ga teng.
x=\frac{36\sqrt{110}+360}{2}
x=\frac{360±36\sqrt{110}}{2} tenglamasini yeching, bunda ± musbat. 360 ni 36\sqrt{110} ga qo'shish.
x=18\sqrt{110}+180
360+36\sqrt{110} ni 2 ga bo'lish.
x=\frac{360-36\sqrt{110}}{2}
x=\frac{360±36\sqrt{110}}{2} tenglamasini yeching, bunda ± manfiy. 360 dan 36\sqrt{110} ni ayirish.
x=180-18\sqrt{110}
360-36\sqrt{110} ni 2 ga bo'lish.
x=18\sqrt{110}+180 x=180-18\sqrt{110}
Tenglama yechildi.
x^{2}-360x-3240=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-360x-3240-\left(-3240\right)=-\left(-3240\right)
3240 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-360x=-\left(-3240\right)
O‘zidan -3240 ayirilsa 0 qoladi.
x^{2}-360x=3240
0 dan -3240 ni ayirish.
x^{2}-360x+\left(-180\right)^{2}=3240+\left(-180\right)^{2}
-360 ni bo‘lish, x shartining koeffitsienti, 2 ga -180 olish uchun. Keyin, -180 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-360x+32400=3240+32400
-180 kvadratini chiqarish.
x^{2}-360x+32400=35640
3240 ni 32400 ga qo'shish.
\left(x-180\right)^{2}=35640
x^{2}-360x+32400 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-180\right)^{2}}=\sqrt{35640}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-180=18\sqrt{110} x-180=-18\sqrt{110}
Qisqartirish.
x=18\sqrt{110}+180 x=180-18\sqrt{110}
180 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}