x uchun yechish
x=12\sqrt{2}+16\approx 32,970562748
x=16-12\sqrt{2}\approx -0,970562748
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-32x-32=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\left(-32\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -32 ni b va -32 ni c bilan almashtiring.
x=\frac{-\left(-32\right)±\sqrt{1024-4\left(-32\right)}}{2}
-32 kvadratini chiqarish.
x=\frac{-\left(-32\right)±\sqrt{1024+128}}{2}
-4 ni -32 marotabaga ko'paytirish.
x=\frac{-\left(-32\right)±\sqrt{1152}}{2}
1024 ni 128 ga qo'shish.
x=\frac{-\left(-32\right)±24\sqrt{2}}{2}
1152 ning kvadrat ildizini chiqarish.
x=\frac{32±24\sqrt{2}}{2}
-32 ning teskarisi 32 ga teng.
x=\frac{24\sqrt{2}+32}{2}
x=\frac{32±24\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 32 ni 24\sqrt{2} ga qo'shish.
x=12\sqrt{2}+16
32+24\sqrt{2} ni 2 ga bo'lish.
x=\frac{32-24\sqrt{2}}{2}
x=\frac{32±24\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 32 dan 24\sqrt{2} ni ayirish.
x=16-12\sqrt{2}
32-24\sqrt{2} ni 2 ga bo'lish.
x=12\sqrt{2}+16 x=16-12\sqrt{2}
Tenglama yechildi.
x^{2}-32x-32=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-32x-32-\left(-32\right)=-\left(-32\right)
32 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-32x=-\left(-32\right)
O‘zidan -32 ayirilsa 0 qoladi.
x^{2}-32x=32
0 dan -32 ni ayirish.
x^{2}-32x+\left(-16\right)^{2}=32+\left(-16\right)^{2}
-32 ni bo‘lish, x shartining koeffitsienti, 2 ga -16 olish uchun. Keyin, -16 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-32x+256=32+256
-16 kvadratini chiqarish.
x^{2}-32x+256=288
32 ni 256 ga qo'shish.
\left(x-16\right)^{2}=288
x^{2}-32x+256 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-16\right)^{2}}=\sqrt{288}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-16=12\sqrt{2} x-16=-12\sqrt{2}
Qisqartirish.
x=12\sqrt{2}+16 x=16-12\sqrt{2}
16 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}