Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-32x-32=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\left(-32\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -32 ni b va -32 ni c bilan almashtiring.
x=\frac{-\left(-32\right)±\sqrt{1024-4\left(-32\right)}}{2}
-32 kvadratini chiqarish.
x=\frac{-\left(-32\right)±\sqrt{1024+128}}{2}
-4 ni -32 marotabaga ko'paytirish.
x=\frac{-\left(-32\right)±\sqrt{1152}}{2}
1024 ni 128 ga qo'shish.
x=\frac{-\left(-32\right)±24\sqrt{2}}{2}
1152 ning kvadrat ildizini chiqarish.
x=\frac{32±24\sqrt{2}}{2}
-32 ning teskarisi 32 ga teng.
x=\frac{24\sqrt{2}+32}{2}
x=\frac{32±24\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 32 ni 24\sqrt{2} ga qo'shish.
x=12\sqrt{2}+16
32+24\sqrt{2} ni 2 ga bo'lish.
x=\frac{32-24\sqrt{2}}{2}
x=\frac{32±24\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 32 dan 24\sqrt{2} ni ayirish.
x=16-12\sqrt{2}
32-24\sqrt{2} ni 2 ga bo'lish.
x=12\sqrt{2}+16 x=16-12\sqrt{2}
Tenglama yechildi.
x^{2}-32x-32=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-32x-32-\left(-32\right)=-\left(-32\right)
32 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-32x=-\left(-32\right)
O‘zidan -32 ayirilsa 0 qoladi.
x^{2}-32x=32
0 dan -32 ni ayirish.
x^{2}-32x+\left(-16\right)^{2}=32+\left(-16\right)^{2}
-32 ni bo‘lish, x shartining koeffitsienti, 2 ga -16 olish uchun. Keyin, -16 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-32x+256=32+256
-16 kvadratini chiqarish.
x^{2}-32x+256=288
32 ni 256 ga qo'shish.
\left(x-16\right)^{2}=288
x^{2}-32x+256 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-16\right)^{2}}=\sqrt{288}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-16=12\sqrt{2} x-16=-12\sqrt{2}
Qisqartirish.
x=12\sqrt{2}+16 x=16-12\sqrt{2}
16 ni tenglamaning ikkala tarafiga qo'shish.