Omil
\left(x-70\right)\left(x+40\right)
Baholash
\left(x-70\right)\left(x+40\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
a+b=-30 ab=1\left(-2800\right)=-2800
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda x^{2}+ax+bx-2800 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-2800 2,-1400 4,-700 5,-560 7,-400 8,-350 10,-280 14,-200 16,-175 20,-140 25,-112 28,-100 35,-80 40,-70 50,-56
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -2800-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-2800=-2799 2-1400=-1398 4-700=-696 5-560=-555 7-400=-393 8-350=-342 10-280=-270 14-200=-186 16-175=-159 20-140=-120 25-112=-87 28-100=-72 35-80=-45 40-70=-30 50-56=-6
Har bir juftlik yigʻindisini hisoblang.
a=-70 b=40
Yechim – -30 yigʻindisini beruvchi juftlik.
\left(x^{2}-70x\right)+\left(40x-2800\right)
x^{2}-30x-2800 ni \left(x^{2}-70x\right)+\left(40x-2800\right) sifatida qaytadan yozish.
x\left(x-70\right)+40\left(x-70\right)
Birinchi guruhda x ni va ikkinchi guruhda 40 ni faktordan chiqaring.
\left(x-70\right)\left(x+40\right)
Distributiv funktsiyasidan foydalangan holda x-70 umumiy terminini chiqaring.
x^{2}-30x-2800=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\left(-2800\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-30\right)±\sqrt{900-4\left(-2800\right)}}{2}
-30 kvadratini chiqarish.
x=\frac{-\left(-30\right)±\sqrt{900+11200}}{2}
-4 ni -2800 marotabaga ko'paytirish.
x=\frac{-\left(-30\right)±\sqrt{12100}}{2}
900 ni 11200 ga qo'shish.
x=\frac{-\left(-30\right)±110}{2}
12100 ning kvadrat ildizini chiqarish.
x=\frac{30±110}{2}
-30 ning teskarisi 30 ga teng.
x=\frac{140}{2}
x=\frac{30±110}{2} tenglamasini yeching, bunda ± musbat. 30 ni 110 ga qo'shish.
x=70
140 ni 2 ga bo'lish.
x=-\frac{80}{2}
x=\frac{30±110}{2} tenglamasini yeching, bunda ± manfiy. 30 dan 110 ni ayirish.
x=-40
-80 ni 2 ga bo'lish.
x^{2}-30x-2800=\left(x-70\right)\left(x-\left(-40\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 70 ga va x_{2} uchun -40 ga bo‘ling.
x^{2}-30x-2800=\left(x-70\right)\left(x+40\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}