Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-3x+20=50
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-3x+20-50=50-50
Tenglamaning ikkala tarafidan 50 ni ayirish.
x^{2}-3x+20-50=0
O‘zidan 50 ayirilsa 0 qoladi.
x^{2}-3x-30=0
20 dan 50 ni ayirish.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-30\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va -30 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-30\right)}}{2}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9+120}}{2}
-4 ni -30 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{129}}{2}
9 ni 120 ga qo'shish.
x=\frac{3±\sqrt{129}}{2}
-3 ning teskarisi 3 ga teng.
x=\frac{\sqrt{129}+3}{2}
x=\frac{3±\sqrt{129}}{2} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{129} ga qo'shish.
x=\frac{3-\sqrt{129}}{2}
x=\frac{3±\sqrt{129}}{2} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{129} ni ayirish.
x=\frac{\sqrt{129}+3}{2} x=\frac{3-\sqrt{129}}{2}
Tenglama yechildi.
x^{2}-3x+20=50
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-3x+20-20=50-20
Tenglamaning ikkala tarafidan 20 ni ayirish.
x^{2}-3x=50-20
O‘zidan 20 ayirilsa 0 qoladi.
x^{2}-3x=30
50 dan 20 ni ayirish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=30+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=30+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{129}{4}
30 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{129}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{129}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{129}}{2} x-\frac{3}{2}=-\frac{\sqrt{129}}{2}
Qisqartirish.
x=\frac{\sqrt{129}+3}{2} x=\frac{3-\sqrt{129}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.