x uchun yechish
x=28
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
x\left(x-28\right)=0
x omili.
x=0 x=28
Tenglamani yechish uchun x=0 va x-28=0 ni yeching.
x^{2}-28x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -28 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-28\right)±28}{2}
\left(-28\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{28±28}{2}
-28 ning teskarisi 28 ga teng.
x=\frac{56}{2}
x=\frac{28±28}{2} tenglamasini yeching, bunda ± musbat. 28 ni 28 ga qo'shish.
x=28
56 ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{28±28}{2} tenglamasini yeching, bunda ± manfiy. 28 dan 28 ni ayirish.
x=0
0 ni 2 ga bo'lish.
x=28 x=0
Tenglama yechildi.
x^{2}-28x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-28x+\left(-14\right)^{2}=\left(-14\right)^{2}
-28 ni bo‘lish, x shartining koeffitsienti, 2 ga -14 olish uchun. Keyin, -14 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-28x+196=196
-14 kvadratini chiqarish.
\left(x-14\right)^{2}=196
x^{2}-28x+196 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-14\right)^{2}}=\sqrt{196}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-14=14 x-14=-14
Qisqartirish.
x=28 x=0
14 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}