Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-28x+48=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 48}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -28 ni b va 48 ni c bilan almashtiring.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 48}}{2}
-28 kvadratini chiqarish.
x=\frac{-\left(-28\right)±\sqrt{784-192}}{2}
-4 ni 48 marotabaga ko'paytirish.
x=\frac{-\left(-28\right)±\sqrt{592}}{2}
784 ni -192 ga qo'shish.
x=\frac{-\left(-28\right)±4\sqrt{37}}{2}
592 ning kvadrat ildizini chiqarish.
x=\frac{28±4\sqrt{37}}{2}
-28 ning teskarisi 28 ga teng.
x=\frac{4\sqrt{37}+28}{2}
x=\frac{28±4\sqrt{37}}{2} tenglamasini yeching, bunda ± musbat. 28 ni 4\sqrt{37} ga qo'shish.
x=2\sqrt{37}+14
28+4\sqrt{37} ni 2 ga bo'lish.
x=\frac{28-4\sqrt{37}}{2}
x=\frac{28±4\sqrt{37}}{2} tenglamasini yeching, bunda ± manfiy. 28 dan 4\sqrt{37} ni ayirish.
x=14-2\sqrt{37}
28-4\sqrt{37} ni 2 ga bo'lish.
x=2\sqrt{37}+14 x=14-2\sqrt{37}
Tenglama yechildi.
x^{2}-28x+48=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-28x+48-48=-48
Tenglamaning ikkala tarafidan 48 ni ayirish.
x^{2}-28x=-48
O‘zidan 48 ayirilsa 0 qoladi.
x^{2}-28x+\left(-14\right)^{2}=-48+\left(-14\right)^{2}
-28 ni bo‘lish, x shartining koeffitsienti, 2 ga -14 olish uchun. Keyin, -14 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-28x+196=-48+196
-14 kvadratini chiqarish.
x^{2}-28x+196=148
-48 ni 196 ga qo'shish.
\left(x-14\right)^{2}=148
x^{2}-28x+196 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-14\right)^{2}}=\sqrt{148}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-14=2\sqrt{37} x-14=-2\sqrt{37}
Qisqartirish.
x=2\sqrt{37}+14 x=14-2\sqrt{37}
14 ni tenglamaning ikkala tarafiga qo'shish.