x uchun yechish
x=2\sqrt{37}+14\approx 26,165525061
x=14-2\sqrt{37}\approx 1,834474939
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-28x+48=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 48}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -28 ni b va 48 ni c bilan almashtiring.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 48}}{2}
-28 kvadratini chiqarish.
x=\frac{-\left(-28\right)±\sqrt{784-192}}{2}
-4 ni 48 marotabaga ko'paytirish.
x=\frac{-\left(-28\right)±\sqrt{592}}{2}
784 ni -192 ga qo'shish.
x=\frac{-\left(-28\right)±4\sqrt{37}}{2}
592 ning kvadrat ildizini chiqarish.
x=\frac{28±4\sqrt{37}}{2}
-28 ning teskarisi 28 ga teng.
x=\frac{4\sqrt{37}+28}{2}
x=\frac{28±4\sqrt{37}}{2} tenglamasini yeching, bunda ± musbat. 28 ni 4\sqrt{37} ga qo'shish.
x=2\sqrt{37}+14
28+4\sqrt{37} ni 2 ga bo'lish.
x=\frac{28-4\sqrt{37}}{2}
x=\frac{28±4\sqrt{37}}{2} tenglamasini yeching, bunda ± manfiy. 28 dan 4\sqrt{37} ni ayirish.
x=14-2\sqrt{37}
28-4\sqrt{37} ni 2 ga bo'lish.
x=2\sqrt{37}+14 x=14-2\sqrt{37}
Tenglama yechildi.
x^{2}-28x+48=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-28x+48-48=-48
Tenglamaning ikkala tarafidan 48 ni ayirish.
x^{2}-28x=-48
O‘zidan 48 ayirilsa 0 qoladi.
x^{2}-28x+\left(-14\right)^{2}=-48+\left(-14\right)^{2}
-28 ni bo‘lish, x shartining koeffitsienti, 2 ga -14 olish uchun. Keyin, -14 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-28x+196=-48+196
-14 kvadratini chiqarish.
x^{2}-28x+196=148
-48 ni 196 ga qo'shish.
\left(x-14\right)^{2}=148
x^{2}-28x+196 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-14\right)^{2}}=\sqrt{148}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-14=2\sqrt{37} x-14=-2\sqrt{37}
Qisqartirish.
x=2\sqrt{37}+14 x=14-2\sqrt{37}
14 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}