Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-25x+104+7x=-3
7x ni ikki tarafga qo’shing.
x^{2}-18x+104=-3
-18x ni olish uchun -25x va 7x ni birlashtirish.
x^{2}-18x+104+3=0
3 ni ikki tarafga qo’shing.
x^{2}-18x+107=0
107 olish uchun 104 va 3'ni qo'shing.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 107}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -18 ni b va 107 ni c bilan almashtiring.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 107}}{2}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{324-428}}{2}
-4 ni 107 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{-104}}{2}
324 ni -428 ga qo'shish.
x=\frac{-\left(-18\right)±2\sqrt{26}i}{2}
-104 ning kvadrat ildizini chiqarish.
x=\frac{18±2\sqrt{26}i}{2}
-18 ning teskarisi 18 ga teng.
x=\frac{18+2\sqrt{26}i}{2}
x=\frac{18±2\sqrt{26}i}{2} tenglamasini yeching, bunda ± musbat. 18 ni 2i\sqrt{26} ga qo'shish.
x=9+\sqrt{26}i
18+2i\sqrt{26} ni 2 ga bo'lish.
x=\frac{-2\sqrt{26}i+18}{2}
x=\frac{18±2\sqrt{26}i}{2} tenglamasini yeching, bunda ± manfiy. 18 dan 2i\sqrt{26} ni ayirish.
x=-\sqrt{26}i+9
18-2i\sqrt{26} ni 2 ga bo'lish.
x=9+\sqrt{26}i x=-\sqrt{26}i+9
Tenglama yechildi.
x^{2}-25x+104+7x=-3
7x ni ikki tarafga qo’shing.
x^{2}-18x+104=-3
-18x ni olish uchun -25x va 7x ni birlashtirish.
x^{2}-18x=-3-104
Ikkala tarafdan 104 ni ayirish.
x^{2}-18x=-107
-107 olish uchun -3 dan 104 ni ayirish.
x^{2}-18x+\left(-9\right)^{2}=-107+\left(-9\right)^{2}
-18 ni bo‘lish, x shartining koeffitsienti, 2 ga -9 olish uchun. Keyin, -9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-18x+81=-107+81
-9 kvadratini chiqarish.
x^{2}-18x+81=-26
-107 ni 81 ga qo'shish.
\left(x-9\right)^{2}=-26
x^{2}-18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-9\right)^{2}}=\sqrt{-26}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-9=\sqrt{26}i x-9=-\sqrt{26}i
Qisqartirish.
x=9+\sqrt{26}i x=-\sqrt{26}i+9
9 ni tenglamaning ikkala tarafiga qo'shish.