x uchun yechish (complex solution)
x=9+\sqrt{26}i\approx 9+5,099019514i
x=-\sqrt{26}i+9\approx 9-5,099019514i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-25x+104+7x=-3
7x ni ikki tarafga qo’shing.
x^{2}-18x+104=-3
-18x ni olish uchun -25x va 7x ni birlashtirish.
x^{2}-18x+104+3=0
3 ni ikki tarafga qo’shing.
x^{2}-18x+107=0
107 olish uchun 104 va 3'ni qo'shing.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 107}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -18 ni b va 107 ni c bilan almashtiring.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 107}}{2}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{324-428}}{2}
-4 ni 107 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{-104}}{2}
324 ni -428 ga qo'shish.
x=\frac{-\left(-18\right)±2\sqrt{26}i}{2}
-104 ning kvadrat ildizini chiqarish.
x=\frac{18±2\sqrt{26}i}{2}
-18 ning teskarisi 18 ga teng.
x=\frac{18+2\sqrt{26}i}{2}
x=\frac{18±2\sqrt{26}i}{2} tenglamasini yeching, bunda ± musbat. 18 ni 2i\sqrt{26} ga qo'shish.
x=9+\sqrt{26}i
18+2i\sqrt{26} ni 2 ga bo'lish.
x=\frac{-2\sqrt{26}i+18}{2}
x=\frac{18±2\sqrt{26}i}{2} tenglamasini yeching, bunda ± manfiy. 18 dan 2i\sqrt{26} ni ayirish.
x=-\sqrt{26}i+9
18-2i\sqrt{26} ni 2 ga bo'lish.
x=9+\sqrt{26}i x=-\sqrt{26}i+9
Tenglama yechildi.
x^{2}-25x+104+7x=-3
7x ni ikki tarafga qo’shing.
x^{2}-18x+104=-3
-18x ni olish uchun -25x va 7x ni birlashtirish.
x^{2}-18x=-3-104
Ikkala tarafdan 104 ni ayirish.
x^{2}-18x=-107
-107 olish uchun -3 dan 104 ni ayirish.
x^{2}-18x+\left(-9\right)^{2}=-107+\left(-9\right)^{2}
-18 ni bo‘lish, x shartining koeffitsienti, 2 ga -9 olish uchun. Keyin, -9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-18x+81=-107+81
-9 kvadratini chiqarish.
x^{2}-18x+81=-26
-107 ni 81 ga qo'shish.
\left(x-9\right)^{2}=-26
x^{2}-18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-9\right)^{2}}=\sqrt{-26}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-9=\sqrt{26}i x-9=-\sqrt{26}i
Qisqartirish.
x=9+\sqrt{26}i x=-\sqrt{26}i+9
9 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}