Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-20x-496=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-496\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-20\right)±\sqrt{400-4\left(-496\right)}}{2}
-20 kvadratini chiqarish.
x=\frac{-\left(-20\right)±\sqrt{400+1984}}{2}
-4 ni -496 marotabaga ko'paytirish.
x=\frac{-\left(-20\right)±\sqrt{2384}}{2}
400 ni 1984 ga qo'shish.
x=\frac{-\left(-20\right)±4\sqrt{149}}{2}
2384 ning kvadrat ildizini chiqarish.
x=\frac{20±4\sqrt{149}}{2}
-20 ning teskarisi 20 ga teng.
x=\frac{4\sqrt{149}+20}{2}
x=\frac{20±4\sqrt{149}}{2} tenglamasini yeching, bunda ± musbat. 20 ni 4\sqrt{149} ga qo'shish.
x=2\sqrt{149}+10
20+4\sqrt{149} ni 2 ga bo'lish.
x=\frac{20-4\sqrt{149}}{2}
x=\frac{20±4\sqrt{149}}{2} tenglamasini yeching, bunda ± manfiy. 20 dan 4\sqrt{149} ni ayirish.
x=10-2\sqrt{149}
20-4\sqrt{149} ni 2 ga bo'lish.
x^{2}-20x-496=\left(x-\left(2\sqrt{149}+10\right)\right)\left(x-\left(10-2\sqrt{149}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 10+2\sqrt{149} ga va x_{2} uchun 10-2\sqrt{149} ga bo‘ling.