Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-2x-96=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-96\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va -96 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-96\right)}}{2}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4+384}}{2}
-4 ni -96 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{388}}{2}
4 ni 384 ga qo'shish.
x=\frac{-\left(-2\right)±2\sqrt{97}}{2}
388 ning kvadrat ildizini chiqarish.
x=\frac{2±2\sqrt{97}}{2}
-2 ning teskarisi 2 ga teng.
x=\frac{2\sqrt{97}+2}{2}
x=\frac{2±2\sqrt{97}}{2} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{97} ga qo'shish.
x=\sqrt{97}+1
2+2\sqrt{97} ni 2 ga bo'lish.
x=\frac{2-2\sqrt{97}}{2}
x=\frac{2±2\sqrt{97}}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{97} ni ayirish.
x=1-\sqrt{97}
2-2\sqrt{97} ni 2 ga bo'lish.
x=\sqrt{97}+1 x=1-\sqrt{97}
Tenglama yechildi.
x^{2}-2x-96=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-2x-96-\left(-96\right)=-\left(-96\right)
96 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-2x=-\left(-96\right)
O‘zidan -96 ayirilsa 0 qoladi.
x^{2}-2x=96
0 dan -96 ni ayirish.
x^{2}-2x+1=96+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=97
96 ni 1 ga qo'shish.
\left(x-1\right)^{2}=97
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{97}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\sqrt{97} x-1=-\sqrt{97}
Qisqartirish.
x=\sqrt{97}+1 x=1-\sqrt{97}
1 ni tenglamaning ikkala tarafiga qo'shish.