Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-2x-1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)}}{2}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4+4}}{2}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{8}}{2}
4 ni 4 ga qo'shish.
x=\frac{-\left(-2\right)±2\sqrt{2}}{2}
8 ning kvadrat ildizini chiqarish.
x=\frac{2±2\sqrt{2}}{2}
-2 ning teskarisi 2 ga teng.
x=\frac{2\sqrt{2}+2}{2}
x=\frac{2±2\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{2} ga qo'shish.
x=\sqrt{2}+1
2+2\sqrt{2} ni 2 ga bo'lish.
x=\frac{2-2\sqrt{2}}{2}
x=\frac{2±2\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{2} ni ayirish.
x=1-\sqrt{2}
2-2\sqrt{2} ni 2 ga bo'lish.
x^{2}-2x-1=\left(x-\left(\sqrt{2}+1\right)\right)\left(x-\left(1-\sqrt{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 1+\sqrt{2} ga va x_{2} uchun 1-\sqrt{2} ga bo‘ling.