m uchun yechish
m=-\frac{\left(x+1\right)^{2}}{2\left(1-x\right)}
x\neq 1
x uchun yechish (complex solution)
x=\sqrt{m\left(m-4\right)}+m-1
x=-\sqrt{m\left(m-4\right)}+m-1
x uchun yechish
x=\sqrt{m\left(m-4\right)}+m-1
x=-\sqrt{m\left(m-4\right)}+m-1\text{, }m\geq 4\text{ or }m\leq 0
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-2\left(m-1\right)x+2m=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}+\left(-2m+2\right)x+2m=-1
-2 ga m-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2mx+2x+2m=-1
-2m+2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2mx+2x+2m=-1-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
-2mx+2m=-1-x^{2}-2x
Ikkala tarafdan 2x ni ayirish.
\left(-2x+2\right)m=-1-x^{2}-2x
m'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(2-2x\right)m=-x^{2}-2x-1
Tenglama standart shaklda.
\frac{\left(2-2x\right)m}{2-2x}=-\frac{\left(x+1\right)^{2}}{2-2x}
Ikki tarafini -2x+2 ga bo‘ling.
m=-\frac{\left(x+1\right)^{2}}{2-2x}
-2x+2 ga bo'lish -2x+2 ga ko'paytirishni bekor qiladi.
m=-\frac{\left(x+1\right)^{2}}{2\left(1-x\right)}
-\left(x+1\right)^{2} ni -2x+2 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}