x uchun yechish
x=2\sqrt{23}+9\approx 18,591663047
x=9-2\sqrt{23}\approx -0,591663047
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-18x-18=-7
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-18x-18-\left(-7\right)=-7-\left(-7\right)
7 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-18x-18-\left(-7\right)=0
O‘zidan -7 ayirilsa 0 qoladi.
x^{2}-18x-11=0
-18 dan -7 ni ayirish.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-11\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -18 ni b va -11 ni c bilan almashtiring.
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-11\right)}}{2}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{324+44}}{2}
-4 ni -11 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{368}}{2}
324 ni 44 ga qo'shish.
x=\frac{-\left(-18\right)±4\sqrt{23}}{2}
368 ning kvadrat ildizini chiqarish.
x=\frac{18±4\sqrt{23}}{2}
-18 ning teskarisi 18 ga teng.
x=\frac{4\sqrt{23}+18}{2}
x=\frac{18±4\sqrt{23}}{2} tenglamasini yeching, bunda ± musbat. 18 ni 4\sqrt{23} ga qo'shish.
x=2\sqrt{23}+9
18+4\sqrt{23} ni 2 ga bo'lish.
x=\frac{18-4\sqrt{23}}{2}
x=\frac{18±4\sqrt{23}}{2} tenglamasini yeching, bunda ± manfiy. 18 dan 4\sqrt{23} ni ayirish.
x=9-2\sqrt{23}
18-4\sqrt{23} ni 2 ga bo'lish.
x=2\sqrt{23}+9 x=9-2\sqrt{23}
Tenglama yechildi.
x^{2}-18x-18=-7
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-18x-18-\left(-18\right)=-7-\left(-18\right)
18 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-18x=-7-\left(-18\right)
O‘zidan -18 ayirilsa 0 qoladi.
x^{2}-18x=11
-7 dan -18 ni ayirish.
x^{2}-18x+\left(-9\right)^{2}=11+\left(-9\right)^{2}
-18 ni bo‘lish, x shartining koeffitsienti, 2 ga -9 olish uchun. Keyin, -9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-18x+81=11+81
-9 kvadratini chiqarish.
x^{2}-18x+81=92
11 ni 81 ga qo'shish.
\left(x-9\right)^{2}=92
x^{2}-18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-9\right)^{2}}=\sqrt{92}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-9=2\sqrt{23} x-9=-2\sqrt{23}
Qisqartirish.
x=2\sqrt{23}+9 x=9-2\sqrt{23}
9 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}