Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-17x+21=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 21}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 21}}{2}
-17 kvadratini chiqarish.
x=\frac{-\left(-17\right)±\sqrt{289-84}}{2}
-4 ni 21 marotabaga ko'paytirish.
x=\frac{-\left(-17\right)±\sqrt{205}}{2}
289 ni -84 ga qo'shish.
x=\frac{17±\sqrt{205}}{2}
-17 ning teskarisi 17 ga teng.
x=\frac{\sqrt{205}+17}{2}
x=\frac{17±\sqrt{205}}{2} tenglamasini yeching, bunda ± musbat. 17 ni \sqrt{205} ga qo'shish.
x=\frac{17-\sqrt{205}}{2}
x=\frac{17±\sqrt{205}}{2} tenglamasini yeching, bunda ± manfiy. 17 dan \sqrt{205} ni ayirish.
x^{2}-17x+21=\left(x-\frac{\sqrt{205}+17}{2}\right)\left(x-\frac{17-\sqrt{205}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{17+\sqrt{205}}{2} ga va x_{2} uchun \frac{17-\sqrt{205}}{2} ga bo‘ling.