x uchun yechish
x=\sqrt{7}+8\approx 10,645751311
x=8-\sqrt{7}\approx 5,354248689
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-16x+57=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 57}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -16 ni b va 57 ni c bilan almashtiring.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 57}}{2}
-16 kvadratini chiqarish.
x=\frac{-\left(-16\right)±\sqrt{256-228}}{2}
-4 ni 57 marotabaga ko'paytirish.
x=\frac{-\left(-16\right)±\sqrt{28}}{2}
256 ni -228 ga qo'shish.
x=\frac{-\left(-16\right)±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
x=\frac{16±2\sqrt{7}}{2}
-16 ning teskarisi 16 ga teng.
x=\frac{2\sqrt{7}+16}{2}
x=\frac{16±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. 16 ni 2\sqrt{7} ga qo'shish.
x=\sqrt{7}+8
16+2\sqrt{7} ni 2 ga bo'lish.
x=\frac{16-2\sqrt{7}}{2}
x=\frac{16±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. 16 dan 2\sqrt{7} ni ayirish.
x=8-\sqrt{7}
16-2\sqrt{7} ni 2 ga bo'lish.
x=\sqrt{7}+8 x=8-\sqrt{7}
Tenglama yechildi.
x^{2}-16x+57=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-16x+57-57=-57
Tenglamaning ikkala tarafidan 57 ni ayirish.
x^{2}-16x=-57
O‘zidan 57 ayirilsa 0 qoladi.
x^{2}-16x+\left(-8\right)^{2}=-57+\left(-8\right)^{2}
-16 ni bo‘lish, x shartining koeffitsienti, 2 ga -8 olish uchun. Keyin, -8 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-16x+64=-57+64
-8 kvadratini chiqarish.
x^{2}-16x+64=7
-57 ni 64 ga qo'shish.
\left(x-8\right)^{2}=7
x^{2}-16x+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-8\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-8=\sqrt{7} x-8=-\sqrt{7}
Qisqartirish.
x=\sqrt{7}+8 x=8-\sqrt{7}
8 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}