Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-16x+57=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 57}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -16 ni b va 57 ni c bilan almashtiring.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 57}}{2}
-16 kvadratini chiqarish.
x=\frac{-\left(-16\right)±\sqrt{256-228}}{2}
-4 ni 57 marotabaga ko'paytirish.
x=\frac{-\left(-16\right)±\sqrt{28}}{2}
256 ni -228 ga qo'shish.
x=\frac{-\left(-16\right)±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
x=\frac{16±2\sqrt{7}}{2}
-16 ning teskarisi 16 ga teng.
x=\frac{2\sqrt{7}+16}{2}
x=\frac{16±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. 16 ni 2\sqrt{7} ga qo'shish.
x=\sqrt{7}+8
16+2\sqrt{7} ni 2 ga bo'lish.
x=\frac{16-2\sqrt{7}}{2}
x=\frac{16±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. 16 dan 2\sqrt{7} ni ayirish.
x=8-\sqrt{7}
16-2\sqrt{7} ni 2 ga bo'lish.
x=\sqrt{7}+8 x=8-\sqrt{7}
Tenglama yechildi.
x^{2}-16x+57=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-16x+57-57=-57
Tenglamaning ikkala tarafidan 57 ni ayirish.
x^{2}-16x=-57
O‘zidan 57 ayirilsa 0 qoladi.
x^{2}-16x+\left(-8\right)^{2}=-57+\left(-8\right)^{2}
-16 ni bo‘lish, x shartining koeffitsienti, 2 ga -8 olish uchun. Keyin, -8 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-16x+64=-57+64
-8 kvadratini chiqarish.
x^{2}-16x+64=7
-57 ni 64 ga qo'shish.
\left(x-8\right)^{2}=7
x^{2}-16x+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-8\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-8=\sqrt{7} x-8=-\sqrt{7}
Qisqartirish.
x=\sqrt{7}+8 x=8-\sqrt{7}
8 ni tenglamaning ikkala tarafiga qo'shish.