Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-16x+54=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 54}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -16 ni b va 54 ni c bilan almashtiring.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 54}}{2}
-16 kvadratini chiqarish.
x=\frac{-\left(-16\right)±\sqrt{256-216}}{2}
-4 ni 54 marotabaga ko'paytirish.
x=\frac{-\left(-16\right)±\sqrt{40}}{2}
256 ni -216 ga qo'shish.
x=\frac{-\left(-16\right)±2\sqrt{10}}{2}
40 ning kvadrat ildizini chiqarish.
x=\frac{16±2\sqrt{10}}{2}
-16 ning teskarisi 16 ga teng.
x=\frac{2\sqrt{10}+16}{2}
x=\frac{16±2\sqrt{10}}{2} tenglamasini yeching, bunda ± musbat. 16 ni 2\sqrt{10} ga qo'shish.
x=\sqrt{10}+8
16+2\sqrt{10} ni 2 ga bo'lish.
x=\frac{16-2\sqrt{10}}{2}
x=\frac{16±2\sqrt{10}}{2} tenglamasini yeching, bunda ± manfiy. 16 dan 2\sqrt{10} ni ayirish.
x=8-\sqrt{10}
16-2\sqrt{10} ni 2 ga bo'lish.
x=\sqrt{10}+8 x=8-\sqrt{10}
Tenglama yechildi.
x^{2}-16x+54=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-16x+54-54=-54
Tenglamaning ikkala tarafidan 54 ni ayirish.
x^{2}-16x=-54
O‘zidan 54 ayirilsa 0 qoladi.
x^{2}-16x+\left(-8\right)^{2}=-54+\left(-8\right)^{2}
-16 ni bo‘lish, x shartining koeffitsienti, 2 ga -8 olish uchun. Keyin, -8 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-16x+64=-54+64
-8 kvadratini chiqarish.
x^{2}-16x+64=10
-54 ni 64 ga qo'shish.
\left(x-8\right)^{2}=10
x^{2}-16x+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-8\right)^{2}}=\sqrt{10}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-8=\sqrt{10} x-8=-\sqrt{10}
Qisqartirish.
x=\sqrt{10}+8 x=8-\sqrt{10}
8 ni tenglamaning ikkala tarafiga qo'shish.