Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-15x-9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -15 ni b va -9 ni c bilan almashtiring.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-9\right)}}{2}
-15 kvadratini chiqarish.
x=\frac{-\left(-15\right)±\sqrt{225+36}}{2}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-15\right)±\sqrt{261}}{2}
225 ni 36 ga qo'shish.
x=\frac{-\left(-15\right)±3\sqrt{29}}{2}
261 ning kvadrat ildizini chiqarish.
x=\frac{15±3\sqrt{29}}{2}
-15 ning teskarisi 15 ga teng.
x=\frac{3\sqrt{29}+15}{2}
x=\frac{15±3\sqrt{29}}{2} tenglamasini yeching, bunda ± musbat. 15 ni 3\sqrt{29} ga qo'shish.
x=\frac{15-3\sqrt{29}}{2}
x=\frac{15±3\sqrt{29}}{2} tenglamasini yeching, bunda ± manfiy. 15 dan 3\sqrt{29} ni ayirish.
x=\frac{3\sqrt{29}+15}{2} x=\frac{15-3\sqrt{29}}{2}
Tenglama yechildi.
x^{2}-15x-9=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-15x-9-\left(-9\right)=-\left(-9\right)
9 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-15x=-\left(-9\right)
O‘zidan -9 ayirilsa 0 qoladi.
x^{2}-15x=9
0 dan -9 ni ayirish.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=9+\left(-\frac{15}{2}\right)^{2}
-15 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{15}{2} olish uchun. Keyin, -\frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-15x+\frac{225}{4}=9+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{15}{2} kvadratini chiqarish.
x^{2}-15x+\frac{225}{4}=\frac{261}{4}
9 ni \frac{225}{4} ga qo'shish.
\left(x-\frac{15}{2}\right)^{2}=\frac{261}{4}
x^{2}-15x+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{261}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{15}{2}=\frac{3\sqrt{29}}{2} x-\frac{15}{2}=-\frac{3\sqrt{29}}{2}
Qisqartirish.
x=\frac{3\sqrt{29}+15}{2} x=\frac{15-3\sqrt{29}}{2}
\frac{15}{2} ni tenglamaning ikkala tarafiga qo'shish.