x uchun yechish
x = \frac{\sqrt{201} + 15}{2} \approx 14,588723439
x=\frac{15-\sqrt{201}}{2}\approx 0,411276561
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-15x+6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 6}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -15 ni b va 6 ni c bilan almashtiring.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 6}}{2}
-15 kvadratini chiqarish.
x=\frac{-\left(-15\right)±\sqrt{225-24}}{2}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-15\right)±\sqrt{201}}{2}
225 ni -24 ga qo'shish.
x=\frac{15±\sqrt{201}}{2}
-15 ning teskarisi 15 ga teng.
x=\frac{\sqrt{201}+15}{2}
x=\frac{15±\sqrt{201}}{2} tenglamasini yeching, bunda ± musbat. 15 ni \sqrt{201} ga qo'shish.
x=\frac{15-\sqrt{201}}{2}
x=\frac{15±\sqrt{201}}{2} tenglamasini yeching, bunda ± manfiy. 15 dan \sqrt{201} ni ayirish.
x=\frac{\sqrt{201}+15}{2} x=\frac{15-\sqrt{201}}{2}
Tenglama yechildi.
x^{2}-15x+6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-15x+6-6=-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
x^{2}-15x=-6
O‘zidan 6 ayirilsa 0 qoladi.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-6+\left(-\frac{15}{2}\right)^{2}
-15 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{15}{2} olish uchun. Keyin, -\frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-15x+\frac{225}{4}=-6+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{15}{2} kvadratini chiqarish.
x^{2}-15x+\frac{225}{4}=\frac{201}{4}
-6 ni \frac{225}{4} ga qo'shish.
\left(x-\frac{15}{2}\right)^{2}=\frac{201}{4}
x^{2}-15x+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{201}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{15}{2}=\frac{\sqrt{201}}{2} x-\frac{15}{2}=-\frac{\sqrt{201}}{2}
Qisqartirish.
x=\frac{\sqrt{201}+15}{2} x=\frac{15-\sqrt{201}}{2}
\frac{15}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}