Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-15x+100=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 100}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -15 ni b va 100 ni c bilan almashtiring.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 100}}{2}
-15 kvadratini chiqarish.
x=\frac{-\left(-15\right)±\sqrt{225-400}}{2}
-4 ni 100 marotabaga ko'paytirish.
x=\frac{-\left(-15\right)±\sqrt{-175}}{2}
225 ni -400 ga qo'shish.
x=\frac{-\left(-15\right)±5\sqrt{7}i}{2}
-175 ning kvadrat ildizini chiqarish.
x=\frac{15±5\sqrt{7}i}{2}
-15 ning teskarisi 15 ga teng.
x=\frac{15+5\sqrt{7}i}{2}
x=\frac{15±5\sqrt{7}i}{2} tenglamasini yeching, bunda ± musbat. 15 ni 5i\sqrt{7} ga qo'shish.
x=\frac{-5\sqrt{7}i+15}{2}
x=\frac{15±5\sqrt{7}i}{2} tenglamasini yeching, bunda ± manfiy. 15 dan 5i\sqrt{7} ni ayirish.
x=\frac{15+5\sqrt{7}i}{2} x=\frac{-5\sqrt{7}i+15}{2}
Tenglama yechildi.
x^{2}-15x+100=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-15x+100-100=-100
Tenglamaning ikkala tarafidan 100 ni ayirish.
x^{2}-15x=-100
O‘zidan 100 ayirilsa 0 qoladi.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-100+\left(-\frac{15}{2}\right)^{2}
-15 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{15}{2} olish uchun. Keyin, -\frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-15x+\frac{225}{4}=-100+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{15}{2} kvadratini chiqarish.
x^{2}-15x+\frac{225}{4}=-\frac{175}{4}
-100 ni \frac{225}{4} ga qo'shish.
\left(x-\frac{15}{2}\right)^{2}=-\frac{175}{4}
x^{2}-15x+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{-\frac{175}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{15}{2}=\frac{5\sqrt{7}i}{2} x-\frac{15}{2}=-\frac{5\sqrt{7}i}{2}
Qisqartirish.
x=\frac{15+5\sqrt{7}i}{2} x=\frac{-5\sqrt{7}i+15}{2}
\frac{15}{2} ni tenglamaning ikkala tarafiga qo'shish.