Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-14x=-47
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-14x-\left(-47\right)=-47-\left(-47\right)
47 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-14x-\left(-47\right)=0
O‘zidan -47 ayirilsa 0 qoladi.
x^{2}-14x+47=0
0 dan -47 ni ayirish.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 47}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -14 ni b va 47 ni c bilan almashtiring.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 47}}{2}
-14 kvadratini chiqarish.
x=\frac{-\left(-14\right)±\sqrt{196-188}}{2}
-4 ni 47 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{8}}{2}
196 ni -188 ga qo'shish.
x=\frac{-\left(-14\right)±2\sqrt{2}}{2}
8 ning kvadrat ildizini chiqarish.
x=\frac{14±2\sqrt{2}}{2}
-14 ning teskarisi 14 ga teng.
x=\frac{2\sqrt{2}+14}{2}
x=\frac{14±2\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 14 ni 2\sqrt{2} ga qo'shish.
x=\sqrt{2}+7
14+2\sqrt{2} ni 2 ga bo'lish.
x=\frac{14-2\sqrt{2}}{2}
x=\frac{14±2\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 14 dan 2\sqrt{2} ni ayirish.
x=7-\sqrt{2}
14-2\sqrt{2} ni 2 ga bo'lish.
x=\sqrt{2}+7 x=7-\sqrt{2}
Tenglama yechildi.
x^{2}-14x=-47
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-14x+\left(-7\right)^{2}=-47+\left(-7\right)^{2}
-14 ni bo‘lish, x shartining koeffitsienti, 2 ga -7 olish uchun. Keyin, -7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-14x+49=-47+49
-7 kvadratini chiqarish.
x^{2}-14x+49=2
-47 ni 49 ga qo'shish.
\left(x-7\right)^{2}=2
x^{2}-14x+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-7\right)^{2}}=\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-7=\sqrt{2} x-7=-\sqrt{2}
Qisqartirish.
x=\sqrt{2}+7 x=7-\sqrt{2}
7 ni tenglamaning ikkala tarafiga qo'shish.