Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-14x+14=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 14}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -14 ni b va 14 ni c bilan almashtiring.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 14}}{2}
-14 kvadratini chiqarish.
x=\frac{-\left(-14\right)±\sqrt{196-56}}{2}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{140}}{2}
196 ni -56 ga qo'shish.
x=\frac{-\left(-14\right)±2\sqrt{35}}{2}
140 ning kvadrat ildizini chiqarish.
x=\frac{14±2\sqrt{35}}{2}
-14 ning teskarisi 14 ga teng.
x=\frac{2\sqrt{35}+14}{2}
x=\frac{14±2\sqrt{35}}{2} tenglamasini yeching, bunda ± musbat. 14 ni 2\sqrt{35} ga qo'shish.
x=\sqrt{35}+7
14+2\sqrt{35} ni 2 ga bo'lish.
x=\frac{14-2\sqrt{35}}{2}
x=\frac{14±2\sqrt{35}}{2} tenglamasini yeching, bunda ± manfiy. 14 dan 2\sqrt{35} ni ayirish.
x=7-\sqrt{35}
14-2\sqrt{35} ni 2 ga bo'lish.
x=\sqrt{35}+7 x=7-\sqrt{35}
Tenglama yechildi.
x^{2}-14x+14=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-14x+14-14=-14
Tenglamaning ikkala tarafidan 14 ni ayirish.
x^{2}-14x=-14
O‘zidan 14 ayirilsa 0 qoladi.
x^{2}-14x+\left(-7\right)^{2}=-14+\left(-7\right)^{2}
-14 ni bo‘lish, x shartining koeffitsienti, 2 ga -7 olish uchun. Keyin, -7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-14x+49=-14+49
-7 kvadratini chiqarish.
x^{2}-14x+49=35
-14 ni 49 ga qo'shish.
\left(x-7\right)^{2}=35
x^{2}-14x+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-7\right)^{2}}=\sqrt{35}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-7=\sqrt{35} x-7=-\sqrt{35}
Qisqartirish.
x=\sqrt{35}+7 x=7-\sqrt{35}
7 ni tenglamaning ikkala tarafiga qo'shish.