Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-13x+33=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 33}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -13 ni b va 33 ni c bilan almashtiring.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 33}}{2}
-13 kvadratini chiqarish.
x=\frac{-\left(-13\right)±\sqrt{169-132}}{2}
-4 ni 33 marotabaga ko'paytirish.
x=\frac{-\left(-13\right)±\sqrt{37}}{2}
169 ni -132 ga qo'shish.
x=\frac{13±\sqrt{37}}{2}
-13 ning teskarisi 13 ga teng.
x=\frac{\sqrt{37}+13}{2}
x=\frac{13±\sqrt{37}}{2} tenglamasini yeching, bunda ± musbat. 13 ni \sqrt{37} ga qo'shish.
x=\frac{13-\sqrt{37}}{2}
x=\frac{13±\sqrt{37}}{2} tenglamasini yeching, bunda ± manfiy. 13 dan \sqrt{37} ni ayirish.
x=\frac{\sqrt{37}+13}{2} x=\frac{13-\sqrt{37}}{2}
Tenglama yechildi.
x^{2}-13x+33=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-13x+33-33=-33
Tenglamaning ikkala tarafidan 33 ni ayirish.
x^{2}-13x=-33
O‘zidan 33 ayirilsa 0 qoladi.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-33+\left(-\frac{13}{2}\right)^{2}
-13 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{13}{2} olish uchun. Keyin, -\frac{13}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-13x+\frac{169}{4}=-33+\frac{169}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{13}{2} kvadratini chiqarish.
x^{2}-13x+\frac{169}{4}=\frac{37}{4}
-33 ni \frac{169}{4} ga qo'shish.
\left(x-\frac{13}{2}\right)^{2}=\frac{37}{4}
x^{2}-13x+\frac{169}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{13}{2}=\frac{\sqrt{37}}{2} x-\frac{13}{2}=-\frac{\sqrt{37}}{2}
Qisqartirish.
x=\frac{\sqrt{37}+13}{2} x=\frac{13-\sqrt{37}}{2}
\frac{13}{2} ni tenglamaning ikkala tarafiga qo'shish.