Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-12x=4
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-12x-4=4-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
x^{2}-12x-4=0
O‘zidan 4 ayirilsa 0 qoladi.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-4\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -12 ni b va -4 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-4\right)}}{2}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144+16}}{2}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{160}}{2}
144 ni 16 ga qo'shish.
x=\frac{-\left(-12\right)±4\sqrt{10}}{2}
160 ning kvadrat ildizini chiqarish.
x=\frac{12±4\sqrt{10}}{2}
-12 ning teskarisi 12 ga teng.
x=\frac{4\sqrt{10}+12}{2}
x=\frac{12±4\sqrt{10}}{2} tenglamasini yeching, bunda ± musbat. 12 ni 4\sqrt{10} ga qo'shish.
x=2\sqrt{10}+6
12+4\sqrt{10} ni 2 ga bo'lish.
x=\frac{12-4\sqrt{10}}{2}
x=\frac{12±4\sqrt{10}}{2} tenglamasini yeching, bunda ± manfiy. 12 dan 4\sqrt{10} ni ayirish.
x=6-2\sqrt{10}
12-4\sqrt{10} ni 2 ga bo'lish.
x=2\sqrt{10}+6 x=6-2\sqrt{10}
Tenglama yechildi.
x^{2}-12x=4
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-12x+\left(-6\right)^{2}=4+\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-12x+36=4+36
-6 kvadratini chiqarish.
x^{2}-12x+36=40
4 ni 36 ga qo'shish.
\left(x-6\right)^{2}=40
x^{2}-12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-6\right)^{2}}=\sqrt{40}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-6=2\sqrt{10} x-6=-2\sqrt{10}
Qisqartirish.
x=2\sqrt{10}+6 x=6-2\sqrt{10}
6 ni tenglamaning ikkala tarafiga qo'shish.