Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-115x=550
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-115x-550=550-550
Tenglamaning ikkala tarafidan 550 ni ayirish.
x^{2}-115x-550=0
O‘zidan 550 ayirilsa 0 qoladi.
x=\frac{-\left(-115\right)±\sqrt{\left(-115\right)^{2}-4\left(-550\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -115 ni b va -550 ni c bilan almashtiring.
x=\frac{-\left(-115\right)±\sqrt{13225-4\left(-550\right)}}{2}
-115 kvadratini chiqarish.
x=\frac{-\left(-115\right)±\sqrt{13225+2200}}{2}
-4 ni -550 marotabaga ko'paytirish.
x=\frac{-\left(-115\right)±\sqrt{15425}}{2}
13225 ni 2200 ga qo'shish.
x=\frac{-\left(-115\right)±5\sqrt{617}}{2}
15425 ning kvadrat ildizini chiqarish.
x=\frac{115±5\sqrt{617}}{2}
-115 ning teskarisi 115 ga teng.
x=\frac{5\sqrt{617}+115}{2}
x=\frac{115±5\sqrt{617}}{2} tenglamasini yeching, bunda ± musbat. 115 ni 5\sqrt{617} ga qo'shish.
x=\frac{115-5\sqrt{617}}{2}
x=\frac{115±5\sqrt{617}}{2} tenglamasini yeching, bunda ± manfiy. 115 dan 5\sqrt{617} ni ayirish.
x=\frac{5\sqrt{617}+115}{2} x=\frac{115-5\sqrt{617}}{2}
Tenglama yechildi.
x^{2}-115x=550
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-115x+\left(-\frac{115}{2}\right)^{2}=550+\left(-\frac{115}{2}\right)^{2}
-115 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{115}{2} olish uchun. Keyin, -\frac{115}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-115x+\frac{13225}{4}=550+\frac{13225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{115}{2} kvadratini chiqarish.
x^{2}-115x+\frac{13225}{4}=\frac{15425}{4}
550 ni \frac{13225}{4} ga qo'shish.
\left(x-\frac{115}{2}\right)^{2}=\frac{15425}{4}
x^{2}-115x+\frac{13225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{115}{2}\right)^{2}}=\sqrt{\frac{15425}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{115}{2}=\frac{5\sqrt{617}}{2} x-\frac{115}{2}=-\frac{5\sqrt{617}}{2}
Qisqartirish.
x=\frac{5\sqrt{617}+115}{2} x=\frac{115-5\sqrt{617}}{2}
\frac{115}{2} ni tenglamaning ikkala tarafiga qo'shish.