Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(x-10\right)=0
x omili.
x=0 x=10
Tenglamani yechish uchun x=0 va x-10=0 ni yeching.
x^{2}-10x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -10 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±10}{2}
\left(-10\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{10±10}{2}
-10 ning teskarisi 10 ga teng.
x=\frac{20}{2}
x=\frac{10±10}{2} tenglamasini yeching, bunda ± musbat. 10 ni 10 ga qo'shish.
x=10
20 ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{10±10}{2} tenglamasini yeching, bunda ± manfiy. 10 dan 10 ni ayirish.
x=0
0 ni 2 ga bo'lish.
x=10 x=0
Tenglama yechildi.
x^{2}-10x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-10x+\left(-5\right)^{2}=\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=25
-5 kvadratini chiqarish.
\left(x-5\right)^{2}=25
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=5 x-5=-5
Qisqartirish.
x=10 x=0
5 ni tenglamaning ikkala tarafiga qo'shish.