x uchun yechish (complex solution)
x=5+\sqrt{14}i\approx 5+3,741657387i
x=-\sqrt{14}i+5\approx 5-3,741657387i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-10x=-39
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-10x-\left(-39\right)=-39-\left(-39\right)
39 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-10x-\left(-39\right)=0
O‘zidan -39 ayirilsa 0 qoladi.
x^{2}-10x+39=0
0 dan -39 ni ayirish.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 39}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -10 ni b va 39 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 39}}{2}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100-156}}{2}
-4 ni 39 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{-56}}{2}
100 ni -156 ga qo'shish.
x=\frac{-\left(-10\right)±2\sqrt{14}i}{2}
-56 ning kvadrat ildizini chiqarish.
x=\frac{10±2\sqrt{14}i}{2}
-10 ning teskarisi 10 ga teng.
x=\frac{10+2\sqrt{14}i}{2}
x=\frac{10±2\sqrt{14}i}{2} tenglamasini yeching, bunda ± musbat. 10 ni 2i\sqrt{14} ga qo'shish.
x=5+\sqrt{14}i
10+2i\sqrt{14} ni 2 ga bo'lish.
x=\frac{-2\sqrt{14}i+10}{2}
x=\frac{10±2\sqrt{14}i}{2} tenglamasini yeching, bunda ± manfiy. 10 dan 2i\sqrt{14} ni ayirish.
x=-\sqrt{14}i+5
10-2i\sqrt{14} ni 2 ga bo'lish.
x=5+\sqrt{14}i x=-\sqrt{14}i+5
Tenglama yechildi.
x^{2}-10x=-39
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-10x+\left(-5\right)^{2}=-39+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=-39+25
-5 kvadratini chiqarish.
x^{2}-10x+25=-14
-39 ni 25 ga qo'shish.
\left(x-5\right)^{2}=-14
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=\sqrt{14}i x-5=-\sqrt{14}i
Qisqartirish.
x=5+\sqrt{14}i x=-\sqrt{14}i+5
5 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}