Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-10x=-39
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-10x-\left(-39\right)=-39-\left(-39\right)
39 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-10x-\left(-39\right)=0
O‘zidan -39 ayirilsa 0 qoladi.
x^{2}-10x+39=0
0 dan -39 ni ayirish.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 39}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -10 ni b va 39 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 39}}{2}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100-156}}{2}
-4 ni 39 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{-56}}{2}
100 ni -156 ga qo'shish.
x=\frac{-\left(-10\right)±2\sqrt{14}i}{2}
-56 ning kvadrat ildizini chiqarish.
x=\frac{10±2\sqrt{14}i}{2}
-10 ning teskarisi 10 ga teng.
x=\frac{10+2\sqrt{14}i}{2}
x=\frac{10±2\sqrt{14}i}{2} tenglamasini yeching, bunda ± musbat. 10 ni 2i\sqrt{14} ga qo'shish.
x=5+\sqrt{14}i
10+2i\sqrt{14} ni 2 ga bo'lish.
x=\frac{-2\sqrt{14}i+10}{2}
x=\frac{10±2\sqrt{14}i}{2} tenglamasini yeching, bunda ± manfiy. 10 dan 2i\sqrt{14} ni ayirish.
x=-\sqrt{14}i+5
10-2i\sqrt{14} ni 2 ga bo'lish.
x=5+\sqrt{14}i x=-\sqrt{14}i+5
Tenglama yechildi.
x^{2}-10x=-39
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-10x+\left(-5\right)^{2}=-39+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=-39+25
-5 kvadratini chiqarish.
x^{2}-10x+25=-14
-39 ni 25 ga qo'shish.
\left(x-5\right)^{2}=-14
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=\sqrt{14}i x-5=-\sqrt{14}i
Qisqartirish.
x=5+\sqrt{14}i x=-\sqrt{14}i+5
5 ni tenglamaning ikkala tarafiga qo'shish.