Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-10x+90=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 90}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -10 ni b va 90 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 90}}{2}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100-360}}{2}
-4 ni 90 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{-260}}{2}
100 ni -360 ga qo'shish.
x=\frac{-\left(-10\right)±2\sqrt{65}i}{2}
-260 ning kvadrat ildizini chiqarish.
x=\frac{10±2\sqrt{65}i}{2}
-10 ning teskarisi 10 ga teng.
x=\frac{10+2\sqrt{65}i}{2}
x=\frac{10±2\sqrt{65}i}{2} tenglamasini yeching, bunda ± musbat. 10 ni 2i\sqrt{65} ga qo'shish.
x=5+\sqrt{65}i
10+2i\sqrt{65} ni 2 ga bo'lish.
x=\frac{-2\sqrt{65}i+10}{2}
x=\frac{10±2\sqrt{65}i}{2} tenglamasini yeching, bunda ± manfiy. 10 dan 2i\sqrt{65} ni ayirish.
x=-\sqrt{65}i+5
10-2i\sqrt{65} ni 2 ga bo'lish.
x=5+\sqrt{65}i x=-\sqrt{65}i+5
Tenglama yechildi.
x^{2}-10x+90=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-10x+90-90=-90
Tenglamaning ikkala tarafidan 90 ni ayirish.
x^{2}-10x=-90
O‘zidan 90 ayirilsa 0 qoladi.
x^{2}-10x+\left(-5\right)^{2}=-90+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=-90+25
-5 kvadratini chiqarish.
x^{2}-10x+25=-65
-90 ni 25 ga qo'shish.
\left(x-5\right)^{2}=-65
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-65}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=\sqrt{65}i x-5=-\sqrt{65}i
Qisqartirish.
x=5+\sqrt{65}i x=-\sqrt{65}i+5
5 ni tenglamaning ikkala tarafiga qo'shish.