Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-\left(2x-1\right)^{2}=2
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
2x^{2}-\left(4x^{2}-4x+1\right)=2
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2x-1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}-4x^{2}+4x-1=2
4x^{2}-4x+1 teskarisini topish uchun har birining teskarisini toping.
-2x^{2}+4x-1=2
-2x^{2} ni olish uchun 2x^{2} va -4x^{2} ni birlashtirish.
-2x^{2}+4x-1-2=0
Ikkala tarafdan 2 ni ayirish.
-2x^{2}+4x-3=0
-3 olish uchun -1 dan 2 ni ayirish.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 4 ni b va -3 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+8\left(-3\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16-24}}{2\left(-2\right)}
8 ni -3 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{-8}}{2\left(-2\right)}
16 ni -24 ga qo'shish.
x=\frac{-4±2\sqrt{2}i}{2\left(-2\right)}
-8 ning kvadrat ildizini chiqarish.
x=\frac{-4±2\sqrt{2}i}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{-4+2\sqrt{2}i}{-4}
x=\frac{-4±2\sqrt{2}i}{-4} tenglamasini yeching, bunda ± musbat. -4 ni 2i\sqrt{2} ga qo'shish.
x=-\frac{\sqrt{2}i}{2}+1
-4+2i\sqrt{2} ni -4 ga bo'lish.
x=\frac{-2\sqrt{2}i-4}{-4}
x=\frac{-4±2\sqrt{2}i}{-4} tenglamasini yeching, bunda ± manfiy. -4 dan 2i\sqrt{2} ni ayirish.
x=\frac{\sqrt{2}i}{2}+1
-4-2i\sqrt{2} ni -4 ga bo'lish.
x=-\frac{\sqrt{2}i}{2}+1 x=\frac{\sqrt{2}i}{2}+1
Tenglama yechildi.
2x^{2}-\left(2x-1\right)^{2}=2
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
2x^{2}-\left(4x^{2}-4x+1\right)=2
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2x-1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}-4x^{2}+4x-1=2
4x^{2}-4x+1 teskarisini topish uchun har birining teskarisini toping.
-2x^{2}+4x-1=2
-2x^{2} ni olish uchun 2x^{2} va -4x^{2} ni birlashtirish.
-2x^{2}+4x=2+1
1 ni ikki tarafga qo’shing.
-2x^{2}+4x=3
3 olish uchun 2 va 1'ni qo'shing.
\frac{-2x^{2}+4x}{-2}=\frac{3}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{4}{-2}x=\frac{3}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-2x=\frac{3}{-2}
4 ni -2 ga bo'lish.
x^{2}-2x=-\frac{3}{2}
3 ni -2 ga bo'lish.
x^{2}-2x+1=-\frac{3}{2}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=-\frac{1}{2}
-\frac{3}{2} ni 1 ga qo'shish.
\left(x-1\right)^{2}=-\frac{1}{2}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{1}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{\sqrt{2}i}{2} x-1=-\frac{\sqrt{2}i}{2}
Qisqartirish.
x=\frac{\sqrt{2}i}{2}+1 x=-\frac{\sqrt{2}i}{2}+1
1 ni tenglamaning ikkala tarafiga qo'shish.