Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}\times \left(\frac{3}{50}\right)^{2}+\left(1-x\right)^{2}\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\frac{6}{100} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}\times \frac{9}{2500}+\left(1-x\right)^{2}\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
2 daraja ko‘rsatkichini \frac{3}{50} ga hisoblang va \frac{9}{2500} ni qiymatni oling.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-x\right)^{2} kengaytirilishi uchun ishlating.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \left(\frac{1}{50}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\frac{2}{100} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \frac{1}{2500}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
2 daraja ko‘rsatkichini \frac{1}{50} ga hisoblang va \frac{1}{2500} ni qiymatni oling.
x^{2}\times \frac{9}{2500}+\frac{1}{2500}-\frac{1}{1250}x+\frac{1}{2500}x^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
1-2x+x^{2} ga \frac{1}{2500} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\frac{1}{250}x^{2} ni olish uchun x^{2}\times \frac{9}{2500} va \frac{1}{2500}x^{2} ni birlashtirish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
0 hosil qilish uchun 2 va 0 ni ko'paytirish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
0 hosil qilish uchun 0 va 12 ni ko'paytirish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{3}{50}\times \frac{2}{100}=0\times 0\times 327
\frac{6}{100} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{2}{100}=0\times 0\times 327
0 hosil qilish uchun 0 va \frac{3}{50} ni ko'paytirish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{1}{50}=0\times 0\times 327
\frac{2}{100} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)=0\times 0\times 327
0 hosil qilish uchun 0 va \frac{1}{50} ni ko'paytirish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0=0\times 0\times 327
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0\times 0\times 327
\frac{1}{2500} olish uchun \frac{1}{2500} va 0'ni qo'shing.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0\times 327
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0
0 hosil qilish uchun 0 va 327 ni ko'paytirish.
\frac{1}{250}x^{2}-\frac{1}{1250}x+\frac{1}{2500}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{\left(-\frac{1}{1250}\right)^{2}-4\times \frac{1}{250}\times \frac{1}{2500}}}{2\times \frac{1}{250}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{250} ni a, -\frac{1}{1250} ni b va \frac{1}{2500} ni c bilan almashtiring.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{\frac{1}{1562500}-4\times \frac{1}{250}\times \frac{1}{2500}}}{2\times \frac{1}{250}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{1250} kvadratini chiqarish.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{\frac{1}{1562500}-\frac{2}{125}\times \frac{1}{2500}}}{2\times \frac{1}{250}}
-4 ni \frac{1}{250} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{\frac{1}{1562500}-\frac{1}{156250}}}{2\times \frac{1}{250}}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali -\frac{2}{125} ni \frac{1}{2500} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{-\frac{9}{1562500}}}{2\times \frac{1}{250}}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{1562500} ni -\frac{1}{156250} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\left(-\frac{1}{1250}\right)±\frac{3}{1250}i}{2\times \frac{1}{250}}
-\frac{9}{1562500} ning kvadrat ildizini chiqarish.
x=\frac{\frac{1}{1250}±\frac{3}{1250}i}{2\times \frac{1}{250}}
-\frac{1}{1250} ning teskarisi \frac{1}{1250} ga teng.
x=\frac{\frac{1}{1250}±\frac{3}{1250}i}{\frac{1}{125}}
2 ni \frac{1}{250} marotabaga ko'paytirish.
x=\frac{\frac{1}{1250}+\frac{3}{1250}i}{\frac{1}{125}}
x=\frac{\frac{1}{1250}±\frac{3}{1250}i}{\frac{1}{125}} tenglamasini yeching, bunda ± musbat. \frac{1}{1250} ni \frac{3}{1250}i ga qo'shish.
x=\frac{1}{10}+\frac{3}{10}i
\frac{1}{1250}+\frac{3}{1250}i ni \frac{1}{125} ga bo'lish \frac{1}{1250}+\frac{3}{1250}i ga k'paytirish \frac{1}{125} ga qaytarish.
x=\frac{\frac{1}{1250}-\frac{3}{1250}i}{\frac{1}{125}}
x=\frac{\frac{1}{1250}±\frac{3}{1250}i}{\frac{1}{125}} tenglamasini yeching, bunda ± manfiy. \frac{1}{1250} dan \frac{3}{1250}i ni ayirish.
x=\frac{1}{10}-\frac{3}{10}i
\frac{1}{1250}-\frac{3}{1250}i ni \frac{1}{125} ga bo'lish \frac{1}{1250}-\frac{3}{1250}i ga k'paytirish \frac{1}{125} ga qaytarish.
x=\frac{1}{10}+\frac{3}{10}i x=\frac{1}{10}-\frac{3}{10}i
Tenglama yechildi.
x^{2}\times \left(\frac{3}{50}\right)^{2}+\left(1-x\right)^{2}\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\frac{6}{100} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}\times \frac{9}{2500}+\left(1-x\right)^{2}\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
2 daraja ko‘rsatkichini \frac{3}{50} ga hisoblang va \frac{9}{2500} ni qiymatni oling.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-x\right)^{2} kengaytirilishi uchun ishlating.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \left(\frac{1}{50}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\frac{2}{100} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \frac{1}{2500}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
2 daraja ko‘rsatkichini \frac{1}{50} ga hisoblang va \frac{1}{2500} ni qiymatni oling.
x^{2}\times \frac{9}{2500}+\frac{1}{2500}-\frac{1}{1250}x+\frac{1}{2500}x^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
1-2x+x^{2} ga \frac{1}{2500} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\frac{1}{250}x^{2} ni olish uchun x^{2}\times \frac{9}{2500} va \frac{1}{2500}x^{2} ni birlashtirish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
0 hosil qilish uchun 2 va 0 ni ko'paytirish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
0 hosil qilish uchun 0 va 12 ni ko'paytirish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{3}{50}\times \frac{2}{100}=0\times 0\times 327
\frac{6}{100} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{2}{100}=0\times 0\times 327
0 hosil qilish uchun 0 va \frac{3}{50} ni ko'paytirish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{1}{50}=0\times 0\times 327
\frac{2}{100} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)=0\times 0\times 327
0 hosil qilish uchun 0 va \frac{1}{50} ni ko'paytirish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0=0\times 0\times 327
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0\times 0\times 327
\frac{1}{2500} olish uchun \frac{1}{2500} va 0'ni qo'shing.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0\times 327
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0
0 hosil qilish uchun 0 va 327 ni ko'paytirish.
\frac{1}{250}x^{2}-\frac{1}{1250}x=-\frac{1}{2500}
Ikkala tarafdan \frac{1}{2500} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{\frac{1}{250}x^{2}-\frac{1}{1250}x}{\frac{1}{250}}=-\frac{\frac{1}{2500}}{\frac{1}{250}}
Ikkala tarafini 250 ga ko‘paytiring.
x^{2}+\left(-\frac{\frac{1}{1250}}{\frac{1}{250}}\right)x=-\frac{\frac{1}{2500}}{\frac{1}{250}}
\frac{1}{250} ga bo'lish \frac{1}{250} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{5}x=-\frac{\frac{1}{2500}}{\frac{1}{250}}
-\frac{1}{1250} ni \frac{1}{250} ga bo'lish -\frac{1}{1250} ga k'paytirish \frac{1}{250} ga qaytarish.
x^{2}-\frac{1}{5}x=-\frac{1}{10}
-\frac{1}{2500} ni \frac{1}{250} ga bo'lish -\frac{1}{2500} ga k'paytirish \frac{1}{250} ga qaytarish.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=-\frac{1}{10}+\left(-\frac{1}{10}\right)^{2}
-\frac{1}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{10} olish uchun. Keyin, -\frac{1}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{5}x+\frac{1}{100}=-\frac{1}{10}+\frac{1}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{10} kvadratini chiqarish.
x^{2}-\frac{1}{5}x+\frac{1}{100}=-\frac{9}{100}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{10} ni \frac{1}{100} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{10}\right)^{2}=-\frac{9}{100}
x^{2}-\frac{1}{5}x+\frac{1}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{-\frac{9}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{10}=\frac{3}{10}i x-\frac{1}{10}=-\frac{3}{10}i
Qisqartirish.
x=\frac{1}{10}+\frac{3}{10}i x=\frac{1}{10}-\frac{3}{10}i
\frac{1}{10} ni tenglamaning ikkala tarafiga qo'shish.