Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-8x=0
Ikkala tarafdan 8x ni ayirish.
x\left(x-8\right)=0
x omili.
x=0 x=8
Tenglamani yechish uchun x=0 va x-8=0 ni yeching.
x^{2}-8x=0
Ikkala tarafdan 8x ni ayirish.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -8 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±8}{2}
\left(-8\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{8±8}{2}
-8 ning teskarisi 8 ga teng.
x=\frac{16}{2}
x=\frac{8±8}{2} tenglamasini yeching, bunda ± musbat. 8 ni 8 ga qo'shish.
x=8
16 ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{8±8}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 8 ni ayirish.
x=0
0 ni 2 ga bo'lish.
x=8 x=0
Tenglama yechildi.
x^{2}-8x=0
Ikkala tarafdan 8x ni ayirish.
x^{2}-8x+\left(-4\right)^{2}=\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-8x+16=16
-4 kvadratini chiqarish.
\left(x-4\right)^{2}=16
x^{2}-8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-4\right)^{2}}=\sqrt{16}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-4=4 x-4=-4
Qisqartirish.
x=8 x=0
4 ni tenglamaning ikkala tarafiga qo'shish.