Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-25x=0
Ikkala tarafdan 25x ni ayirish.
x\left(x-25\right)=0
x omili.
x=0 x=25
Tenglamani yechish uchun x=0 va x-25=0 ni yeching.
x^{2}-25x=0
Ikkala tarafdan 25x ni ayirish.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -25 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-25\right)±25}{2}
\left(-25\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{25±25}{2}
-25 ning teskarisi 25 ga teng.
x=\frac{50}{2}
x=\frac{25±25}{2} tenglamasini yeching, bunda ± musbat. 25 ni 25 ga qo'shish.
x=25
50 ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{25±25}{2} tenglamasini yeching, bunda ± manfiy. 25 dan 25 ni ayirish.
x=0
0 ni 2 ga bo'lish.
x=25 x=0
Tenglama yechildi.
x^{2}-25x=0
Ikkala tarafdan 25x ni ayirish.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=\left(-\frac{25}{2}\right)^{2}
-25 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{25}{2} olish uchun. Keyin, -\frac{25}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-25x+\frac{625}{4}=\frac{625}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{25}{2} kvadratini chiqarish.
\left(x-\frac{25}{2}\right)^{2}=\frac{625}{4}
x^{2}-25x+\frac{625}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{25}{2}=\frac{25}{2} x-\frac{25}{2}=-\frac{25}{2}
Qisqartirish.
x=25 x=0
\frac{25}{2} ni tenglamaning ikkala tarafiga qo'shish.