Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-2x=1
Ikkala tarafdan 2x ni ayirish.
x^{2}-2x-1=0
Ikkala tarafdan 1 ni ayirish.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)}}{2}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4+4}}{2}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{8}}{2}
4 ni 4 ga qo'shish.
x=\frac{-\left(-2\right)±2\sqrt{2}}{2}
8 ning kvadrat ildizini chiqarish.
x=\frac{2±2\sqrt{2}}{2}
-2 ning teskarisi 2 ga teng.
x=\frac{2\sqrt{2}+2}{2}
x=\frac{2±2\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{2} ga qo'shish.
x=\sqrt{2}+1
2+2\sqrt{2} ni 2 ga bo'lish.
x=\frac{2-2\sqrt{2}}{2}
x=\frac{2±2\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{2} ni ayirish.
x=1-\sqrt{2}
2-2\sqrt{2} ni 2 ga bo'lish.
x=\sqrt{2}+1 x=1-\sqrt{2}
Tenglama yechildi.
x^{2}-2x=1
Ikkala tarafdan 2x ni ayirish.
x^{2}-2x+1=1+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=2
1 ni 1 ga qo'shish.
\left(x-1\right)^{2}=2
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\sqrt{2} x-1=-\sqrt{2}
Qisqartirish.
x=\sqrt{2}+1 x=1-\sqrt{2}
1 ni tenglamaning ikkala tarafiga qo'shish.