Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-2x=0
Ikkala tarafdan 2x ni ayirish.
x\left(x-2\right)=0
x omili.
x=0 x=2
Tenglamani yechish uchun x=0 va x-2=0 ni yeching.
x^{2}-2x=0
Ikkala tarafdan 2x ni ayirish.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±2}{2}
\left(-2\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{2±2}{2}
-2 ning teskarisi 2 ga teng.
x=\frac{4}{2}
x=\frac{2±2}{2} tenglamasini yeching, bunda ± musbat. 2 ni 2 ga qo'shish.
x=2
4 ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{2±2}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 2 ni ayirish.
x=0
0 ni 2 ga bo'lish.
x=2 x=0
Tenglama yechildi.
x^{2}-2x=0
Ikkala tarafdan 2x ni ayirish.
x^{2}-2x+1=1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
\left(x-1\right)^{2}=1
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=1 x-1=-1
Qisqartirish.
x=2 x=0
1 ni tenglamaning ikkala tarafiga qo'shish.