x uchun yechish
x=2
x=0
Grafik
Viktorina
Polynomial
x ^ { 2 } = 2 x
Baham ko'rish
Klipbordga nusxa olish
x^{2}-2x=0
Ikkala tarafdan 2x ni ayirish.
x\left(x-2\right)=0
x omili.
x=0 x=2
Tenglamani yechish uchun x=0 va x-2=0 ni yeching.
x^{2}-2x=0
Ikkala tarafdan 2x ni ayirish.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±2}{2}
\left(-2\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{2±2}{2}
-2 ning teskarisi 2 ga teng.
x=\frac{4}{2}
x=\frac{2±2}{2} tenglamasini yeching, bunda ± musbat. 2 ni 2 ga qo'shish.
x=2
4 ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{2±2}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 2 ni ayirish.
x=0
0 ni 2 ga bo'lish.
x=2 x=0
Tenglama yechildi.
x^{2}-2x=0
Ikkala tarafdan 2x ni ayirish.
x^{2}-2x+1=1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
\left(x-1\right)^{2}=1
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=1 x-1=-1
Qisqartirish.
x=2 x=0
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}