Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-12x=17
Ikkala tarafdan 12x ni ayirish.
x^{2}-12x-17=0
Ikkala tarafdan 17 ni ayirish.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-17\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -12 ni b va -17 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-17\right)}}{2}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144+68}}{2}
-4 ni -17 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{212}}{2}
144 ni 68 ga qo'shish.
x=\frac{-\left(-12\right)±2\sqrt{53}}{2}
212 ning kvadrat ildizini chiqarish.
x=\frac{12±2\sqrt{53}}{2}
-12 ning teskarisi 12 ga teng.
x=\frac{2\sqrt{53}+12}{2}
x=\frac{12±2\sqrt{53}}{2} tenglamasini yeching, bunda ± musbat. 12 ni 2\sqrt{53} ga qo'shish.
x=\sqrt{53}+6
12+2\sqrt{53} ni 2 ga bo'lish.
x=\frac{12-2\sqrt{53}}{2}
x=\frac{12±2\sqrt{53}}{2} tenglamasini yeching, bunda ± manfiy. 12 dan 2\sqrt{53} ni ayirish.
x=6-\sqrt{53}
12-2\sqrt{53} ni 2 ga bo'lish.
x=\sqrt{53}+6 x=6-\sqrt{53}
Tenglama yechildi.
x^{2}-12x=17
Ikkala tarafdan 12x ni ayirish.
x^{2}-12x+\left(-6\right)^{2}=17+\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-12x+36=17+36
-6 kvadratini chiqarish.
x^{2}-12x+36=53
17 ni 36 ga qo'shish.
\left(x-6\right)^{2}=53
x^{2}-12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-6\right)^{2}}=\sqrt{53}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-6=\sqrt{53} x-6=-\sqrt{53}
Qisqartirish.
x=\sqrt{53}+6 x=6-\sqrt{53}
6 ni tenglamaning ikkala tarafiga qo'shish.