Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=12769-113x
12769 hosil qilish uchun 113 va 113 ni ko'paytirish.
x^{2}-12769=-113x
Ikkala tarafdan 12769 ni ayirish.
x^{2}-12769+113x=0
113x ni ikki tarafga qo’shing.
x^{2}+113x-12769=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-113±\sqrt{113^{2}-4\left(-12769\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 113 ni b va -12769 ni c bilan almashtiring.
x=\frac{-113±\sqrt{12769-4\left(-12769\right)}}{2}
113 kvadratini chiqarish.
x=\frac{-113±\sqrt{12769+51076}}{2}
-4 ni -12769 marotabaga ko'paytirish.
x=\frac{-113±\sqrt{63845}}{2}
12769 ni 51076 ga qo'shish.
x=\frac{-113±113\sqrt{5}}{2}
63845 ning kvadrat ildizini chiqarish.
x=\frac{113\sqrt{5}-113}{2}
x=\frac{-113±113\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat. -113 ni 113\sqrt{5} ga qo'shish.
x=\frac{-113\sqrt{5}-113}{2}
x=\frac{-113±113\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy. -113 dan 113\sqrt{5} ni ayirish.
x=\frac{113\sqrt{5}-113}{2} x=\frac{-113\sqrt{5}-113}{2}
Tenglama yechildi.
x^{2}=12769-113x
12769 hosil qilish uchun 113 va 113 ni ko'paytirish.
x^{2}+113x=12769
113x ni ikki tarafga qo’shing.
x^{2}+113x+\left(\frac{113}{2}\right)^{2}=12769+\left(\frac{113}{2}\right)^{2}
113 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{113}{2} olish uchun. Keyin, \frac{113}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+113x+\frac{12769}{4}=12769+\frac{12769}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{113}{2} kvadratini chiqarish.
x^{2}+113x+\frac{12769}{4}=\frac{63845}{4}
12769 ni \frac{12769}{4} ga qo'shish.
\left(x+\frac{113}{2}\right)^{2}=\frac{63845}{4}
x^{2}+113x+\frac{12769}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{113}{2}\right)^{2}}=\sqrt{\frac{63845}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{113}{2}=\frac{113\sqrt{5}}{2} x+\frac{113}{2}=-\frac{113\sqrt{5}}{2}
Qisqartirish.
x=\frac{113\sqrt{5}-113}{2} x=\frac{-113\sqrt{5}-113}{2}
Tenglamaning ikkala tarafidan \frac{113}{2} ni ayirish.