Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{5}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{5}\right)^{2} kengaytirilishi uchun ishlating.
x^{2}=4+4\sqrt{5}+5+\left(2-\sqrt{5}\right)^{2}
\sqrt{5} kvadrati – 5.
x^{2}=9+4\sqrt{5}+\left(2-\sqrt{5}\right)^{2}
9 olish uchun 4 va 5'ni qo'shing.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2-\sqrt{5}\right)^{2} kengaytirilishi uchun ishlating.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+5
\sqrt{5} kvadrati – 5.
x^{2}=9+4\sqrt{5}+9-4\sqrt{5}
9 olish uchun 4 va 5'ni qo'shing.
x^{2}=18+4\sqrt{5}-4\sqrt{5}
18 olish uchun 9 va 9'ni qo'shing.
x^{2}=18
0 ni olish uchun 4\sqrt{5} va -4\sqrt{5} ni birlashtirish.
x=3\sqrt{2} x=-3\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}=4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{5}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{5}\right)^{2} kengaytirilishi uchun ishlating.
x^{2}=4+4\sqrt{5}+5+\left(2-\sqrt{5}\right)^{2}
\sqrt{5} kvadrati – 5.
x^{2}=9+4\sqrt{5}+\left(2-\sqrt{5}\right)^{2}
9 olish uchun 4 va 5'ni qo'shing.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2-\sqrt{5}\right)^{2} kengaytirilishi uchun ishlating.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+5
\sqrt{5} kvadrati – 5.
x^{2}=9+4\sqrt{5}+9-4\sqrt{5}
9 olish uchun 4 va 5'ni qo'shing.
x^{2}=18+4\sqrt{5}-4\sqrt{5}
18 olish uchun 9 va 9'ni qo'shing.
x^{2}=18
0 ni olish uchun 4\sqrt{5} va -4\sqrt{5} ni birlashtirish.
x^{2}-18=0
Ikkala tarafdan 18 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-18\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -18 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-18\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{72}}{2}
-4 ni -18 marotabaga ko'paytirish.
x=\frac{0±6\sqrt{2}}{2}
72 ning kvadrat ildizini chiqarish.
x=3\sqrt{2}
x=\frac{0±6\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat.
x=-3\sqrt{2}
x=\frac{0±6\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy.
x=3\sqrt{2} x=-3\sqrt{2}
Tenglama yechildi.