x uchun yechish
x=3\sqrt{2}\approx 4,242640687
x=-3\sqrt{2}\approx -4,242640687
Grafik
Viktorina
Algebra
5xshash muammolar:
x ^ { 2 } = ( 2 + \sqrt { 5 } ) ^ { 2 } + ( 2 - \sqrt { 5 } ) ^ { 2 }
Baham ko'rish
Klipbordga nusxa olish
x^{2}=4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{5}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{5}\right)^{2} kengaytirilishi uchun ishlating.
x^{2}=4+4\sqrt{5}+5+\left(2-\sqrt{5}\right)^{2}
\sqrt{5} kvadrati – 5.
x^{2}=9+4\sqrt{5}+\left(2-\sqrt{5}\right)^{2}
9 olish uchun 4 va 5'ni qo'shing.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2-\sqrt{5}\right)^{2} kengaytirilishi uchun ishlating.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+5
\sqrt{5} kvadrati – 5.
x^{2}=9+4\sqrt{5}+9-4\sqrt{5}
9 olish uchun 4 va 5'ni qo'shing.
x^{2}=18+4\sqrt{5}-4\sqrt{5}
18 olish uchun 9 va 9'ni qo'shing.
x^{2}=18
0 ni olish uchun 4\sqrt{5} va -4\sqrt{5} ni birlashtirish.
x=3\sqrt{2} x=-3\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}=4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{5}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{5}\right)^{2} kengaytirilishi uchun ishlating.
x^{2}=4+4\sqrt{5}+5+\left(2-\sqrt{5}\right)^{2}
\sqrt{5} kvadrati – 5.
x^{2}=9+4\sqrt{5}+\left(2-\sqrt{5}\right)^{2}
9 olish uchun 4 va 5'ni qo'shing.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(2-\sqrt{5}\right)^{2} kengaytirilishi uchun ishlating.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+5
\sqrt{5} kvadrati – 5.
x^{2}=9+4\sqrt{5}+9-4\sqrt{5}
9 olish uchun 4 va 5'ni qo'shing.
x^{2}=18+4\sqrt{5}-4\sqrt{5}
18 olish uchun 9 va 9'ni qo'shing.
x^{2}=18
0 ni olish uchun 4\sqrt{5} va -4\sqrt{5} ni birlashtirish.
x^{2}-18=0
Ikkala tarafdan 18 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-18\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -18 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-18\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{72}}{2}
-4 ni -18 marotabaga ko'paytirish.
x=\frac{0±6\sqrt{2}}{2}
72 ning kvadrat ildizini chiqarish.
x=3\sqrt{2}
x=\frac{0±6\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat.
x=-3\sqrt{2}
x=\frac{0±6\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy.
x=3\sqrt{2} x=-3\sqrt{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}