a uchun yechish
a=\frac{\sqrt{3}x^{2}}{4}
x uchun yechish (complex solution)
x=-\frac{2\times 3^{\frac{3}{4}}\sqrt{a}}{3}
x=\frac{2\times 3^{\frac{3}{4}}\sqrt{a}}{3}
x uchun yechish
x=\frac{2\times 3^{\frac{3}{4}}\sqrt{a}}{3}
x=-\frac{2\times 3^{\frac{3}{4}}\sqrt{a}}{3}\text{, }a\geq 0
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}=\frac{4a\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
\frac{4a}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
x^{2}=\frac{4a\sqrt{3}}{3}
\sqrt{3} kvadrati – 3.
\frac{4a\sqrt{3}}{3}=x^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
4a\sqrt{3}=3x^{2}
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
4\sqrt{3}a=3x^{2}
Tenglama standart shaklda.
\frac{4\sqrt{3}a}{4\sqrt{3}}=\frac{3x^{2}}{4\sqrt{3}}
Ikki tarafini 4\sqrt{3} ga bo‘ling.
a=\frac{3x^{2}}{4\sqrt{3}}
4\sqrt{3} ga bo'lish 4\sqrt{3} ga ko'paytirishni bekor qiladi.
a=\frac{\sqrt{3}x^{2}}{4}
3x^{2} ni 4\sqrt{3} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}