x uchun yechish
x = \frac{\sqrt{601} + 11}{4} \approx 8,878825336
x=\frac{11-\sqrt{601}}{4}\approx -3,378825336
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-11x-60=0\times 8
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}-11x-60=0
0 hosil qilish uchun 0 va 8 ni ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-60\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -11 ni b va -60 ni c bilan almashtiring.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-60\right)}}{2\times 2}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121-8\left(-60\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{121+480}}{2\times 2}
-8 ni -60 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{601}}{2\times 2}
121 ni 480 ga qo'shish.
x=\frac{11±\sqrt{601}}{2\times 2}
-11 ning teskarisi 11 ga teng.
x=\frac{11±\sqrt{601}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{601}+11}{4}
x=\frac{11±\sqrt{601}}{4} tenglamasini yeching, bunda ± musbat. 11 ni \sqrt{601} ga qo'shish.
x=\frac{11-\sqrt{601}}{4}
x=\frac{11±\sqrt{601}}{4} tenglamasini yeching, bunda ± manfiy. 11 dan \sqrt{601} ni ayirish.
x=\frac{\sqrt{601}+11}{4} x=\frac{11-\sqrt{601}}{4}
Tenglama yechildi.
2x^{2}-11x-60=0\times 8
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}-11x-60=0
0 hosil qilish uchun 0 va 8 ni ko'paytirish.
2x^{2}-11x=60
60 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{2x^{2}-11x}{2}=\frac{60}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{11}{2}x=\frac{60}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{2}x=30
60 ni 2 ga bo'lish.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=30+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{4} olish uchun. Keyin, -\frac{11}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{2}x+\frac{121}{16}=30+\frac{121}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{4} kvadratini chiqarish.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{601}{16}
30 ni \frac{121}{16} ga qo'shish.
\left(x-\frac{11}{4}\right)^{2}=\frac{601}{16}
x^{2}-\frac{11}{2}x+\frac{121}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{601}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{4}=\frac{\sqrt{601}}{4} x-\frac{11}{4}=-\frac{\sqrt{601}}{4}
Qisqartirish.
x=\frac{\sqrt{601}+11}{4} x=\frac{11-\sqrt{601}}{4}
\frac{11}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}