x uchun yechish
x=3
x=-3
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}=\left(3\sqrt{2}\right)^{2}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}=3^{2}\left(\sqrt{2}\right)^{2}
\left(3\sqrt{2}\right)^{2} ni kengaytirish.
2x^{2}=9\left(\sqrt{2}\right)^{2}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
2x^{2}=9\times 2
\sqrt{2} kvadrati – 2.
2x^{2}=18
18 hosil qilish uchun 9 va 2 ni ko'paytirish.
2x^{2}-18=0
Ikkala tarafdan 18 ni ayirish.
x^{2}-9=0
Ikki tarafini 2 ga bo‘ling.
\left(x-3\right)\left(x+3\right)=0
Hisoblang: x^{2}-9. x^{2}-9 ni x^{2}-3^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=3 x=-3
Tenglamani yechish uchun x-3=0 va x+3=0 ni yeching.
2x^{2}=\left(3\sqrt{2}\right)^{2}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}=3^{2}\left(\sqrt{2}\right)^{2}
\left(3\sqrt{2}\right)^{2} ni kengaytirish.
2x^{2}=9\left(\sqrt{2}\right)^{2}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
2x^{2}=9\times 2
\sqrt{2} kvadrati – 2.
2x^{2}=18
18 hosil qilish uchun 9 va 2 ni ko'paytirish.
x^{2}=\frac{18}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}=9
9 ni olish uchun 18 ni 2 ga bo‘ling.
x=3 x=-3
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
2x^{2}=\left(3\sqrt{2}\right)^{2}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}=3^{2}\left(\sqrt{2}\right)^{2}
\left(3\sqrt{2}\right)^{2} ni kengaytirish.
2x^{2}=9\left(\sqrt{2}\right)^{2}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
2x^{2}=9\times 2
\sqrt{2} kvadrati – 2.
2x^{2}=18
18 hosil qilish uchun 9 va 2 ni ko'paytirish.
2x^{2}-18=0
Ikkala tarafdan 18 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-18\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va -18 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\left(-18\right)}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\left(-18\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{144}}{2\times 2}
-8 ni -18 marotabaga ko'paytirish.
x=\frac{0±12}{2\times 2}
144 ning kvadrat ildizini chiqarish.
x=\frac{0±12}{4}
2 ni 2 marotabaga ko'paytirish.
x=3
x=\frac{0±12}{4} tenglamasini yeching, bunda ± musbat. 12 ni 4 ga bo'lish.
x=-3
x=\frac{0±12}{4} tenglamasini yeching, bunda ± manfiy. -12 ni 4 ga bo'lish.
x=3 x=-3
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}