x uchun yechish
x=\sqrt{145}+12\approx 24,041594579
x=12-\sqrt{145}\approx -0,041594579
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+x+1-25x=2
Ikkala tarafdan 25x ni ayirish.
x^{2}-24x+1=2
-24x ni olish uchun x va -25x ni birlashtirish.
x^{2}-24x+1-2=0
Ikkala tarafdan 2 ni ayirish.
x^{2}-24x-1=0
-1 olish uchun 1 dan 2 ni ayirish.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-1\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -24 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-1\right)}}{2}
-24 kvadratini chiqarish.
x=\frac{-\left(-24\right)±\sqrt{576+4}}{2}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{580}}{2}
576 ni 4 ga qo'shish.
x=\frac{-\left(-24\right)±2\sqrt{145}}{2}
580 ning kvadrat ildizini chiqarish.
x=\frac{24±2\sqrt{145}}{2}
-24 ning teskarisi 24 ga teng.
x=\frac{2\sqrt{145}+24}{2}
x=\frac{24±2\sqrt{145}}{2} tenglamasini yeching, bunda ± musbat. 24 ni 2\sqrt{145} ga qo'shish.
x=\sqrt{145}+12
24+2\sqrt{145} ni 2 ga bo'lish.
x=\frac{24-2\sqrt{145}}{2}
x=\frac{24±2\sqrt{145}}{2} tenglamasini yeching, bunda ± manfiy. 24 dan 2\sqrt{145} ni ayirish.
x=12-\sqrt{145}
24-2\sqrt{145} ni 2 ga bo'lish.
x=\sqrt{145}+12 x=12-\sqrt{145}
Tenglama yechildi.
x^{2}+x+1-25x=2
Ikkala tarafdan 25x ni ayirish.
x^{2}-24x+1=2
-24x ni olish uchun x va -25x ni birlashtirish.
x^{2}-24x=2-1
Ikkala tarafdan 1 ni ayirish.
x^{2}-24x=1
1 olish uchun 2 dan 1 ni ayirish.
x^{2}-24x+\left(-12\right)^{2}=1+\left(-12\right)^{2}
-24 ni bo‘lish, x shartining koeffitsienti, 2 ga -12 olish uchun. Keyin, -12 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-24x+144=1+144
-12 kvadratini chiqarish.
x^{2}-24x+144=145
1 ni 144 ga qo'shish.
\left(x-12\right)^{2}=145
x^{2}-24x+144 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-12\right)^{2}}=\sqrt{145}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-12=\sqrt{145} x-12=-\sqrt{145}
Qisqartirish.
x=\sqrt{145}+12 x=12-\sqrt{145}
12 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}