Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+9x-25=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-9±\sqrt{9^{2}-4\left(-25\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 9 ni b va -25 ni c bilan almashtiring.
x=\frac{-9±\sqrt{81-4\left(-25\right)}}{2}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81+100}}{2}
-4 ni -25 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{181}}{2}
81 ni 100 ga qo'shish.
x=\frac{\sqrt{181}-9}{2}
x=\frac{-9±\sqrt{181}}{2} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{181} ga qo'shish.
x=\frac{-\sqrt{181}-9}{2}
x=\frac{-9±\sqrt{181}}{2} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{181} ni ayirish.
x=\frac{\sqrt{181}-9}{2} x=\frac{-\sqrt{181}-9}{2}
Tenglama yechildi.
x^{2}+9x-25=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+9x-25-\left(-25\right)=-\left(-25\right)
25 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+9x=-\left(-25\right)
O‘zidan -25 ayirilsa 0 qoladi.
x^{2}+9x=25
0 dan -25 ni ayirish.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=25+\left(\frac{9}{2}\right)^{2}
9 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{2} olish uchun. Keyin, \frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+9x+\frac{81}{4}=25+\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{2} kvadratini chiqarish.
x^{2}+9x+\frac{81}{4}=\frac{181}{4}
25 ni \frac{81}{4} ga qo'shish.
\left(x+\frac{9}{2}\right)^{2}=\frac{181}{4}
x^{2}+9x+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{181}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{9}{2}=\frac{\sqrt{181}}{2} x+\frac{9}{2}=-\frac{\sqrt{181}}{2}
Qisqartirish.
x=\frac{\sqrt{181}-9}{2} x=\frac{-\sqrt{181}-9}{2}
Tenglamaning ikkala tarafidan \frac{9}{2} ni ayirish.