Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+85x=550
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+85x-550=550-550
Tenglamaning ikkala tarafidan 550 ni ayirish.
x^{2}+85x-550=0
O‘zidan 550 ayirilsa 0 qoladi.
x=\frac{-85±\sqrt{85^{2}-4\left(-550\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 85 ni b va -550 ni c bilan almashtiring.
x=\frac{-85±\sqrt{7225-4\left(-550\right)}}{2}
85 kvadratini chiqarish.
x=\frac{-85±\sqrt{7225+2200}}{2}
-4 ni -550 marotabaga ko'paytirish.
x=\frac{-85±\sqrt{9425}}{2}
7225 ni 2200 ga qo'shish.
x=\frac{-85±5\sqrt{377}}{2}
9425 ning kvadrat ildizini chiqarish.
x=\frac{5\sqrt{377}-85}{2}
x=\frac{-85±5\sqrt{377}}{2} tenglamasini yeching, bunda ± musbat. -85 ni 5\sqrt{377} ga qo'shish.
x=\frac{-5\sqrt{377}-85}{2}
x=\frac{-85±5\sqrt{377}}{2} tenglamasini yeching, bunda ± manfiy. -85 dan 5\sqrt{377} ni ayirish.
x=\frac{5\sqrt{377}-85}{2} x=\frac{-5\sqrt{377}-85}{2}
Tenglama yechildi.
x^{2}+85x=550
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+85x+\left(\frac{85}{2}\right)^{2}=550+\left(\frac{85}{2}\right)^{2}
85 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{85}{2} olish uchun. Keyin, \frac{85}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+85x+\frac{7225}{4}=550+\frac{7225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{85}{2} kvadratini chiqarish.
x^{2}+85x+\frac{7225}{4}=\frac{9425}{4}
550 ni \frac{7225}{4} ga qo'shish.
\left(x+\frac{85}{2}\right)^{2}=\frac{9425}{4}
x^{2}+85x+\frac{7225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{85}{2}\right)^{2}}=\sqrt{\frac{9425}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{85}{2}=\frac{5\sqrt{377}}{2} x+\frac{85}{2}=-\frac{5\sqrt{377}}{2}
Qisqartirish.
x=\frac{5\sqrt{377}-85}{2} x=\frac{-5\sqrt{377}-85}{2}
Tenglamaning ikkala tarafidan \frac{85}{2} ni ayirish.