Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+8x-576=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-8±\sqrt{8^{2}-4\left(-576\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{64-4\left(-576\right)}}{2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64+2304}}{2}
-4 ni -576 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{2368}}{2}
64 ni 2304 ga qo'shish.
x=\frac{-8±8\sqrt{37}}{2}
2368 ning kvadrat ildizini chiqarish.
x=\frac{8\sqrt{37}-8}{2}
x=\frac{-8±8\sqrt{37}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 8\sqrt{37} ga qo'shish.
x=4\sqrt{37}-4
-8+8\sqrt{37} ni 2 ga bo'lish.
x=\frac{-8\sqrt{37}-8}{2}
x=\frac{-8±8\sqrt{37}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 8\sqrt{37} ni ayirish.
x=-4\sqrt{37}-4
-8-8\sqrt{37} ni 2 ga bo'lish.
x^{2}+8x-576=\left(x-\left(4\sqrt{37}-4\right)\right)\left(x-\left(-4\sqrt{37}-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -4+4\sqrt{37} ga va x_{2} uchun -4-4\sqrt{37} ga bo‘ling.