Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+8x+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\times 2}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va 2 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\times 2}}{2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{56}}{2}
64 ni -8 ga qo'shish.
x=\frac{-8±2\sqrt{14}}{2}
56 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{14}-8}{2}
x=\frac{-8±2\sqrt{14}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{14} ga qo'shish.
x=\sqrt{14}-4
-8+2\sqrt{14} ni 2 ga bo'lish.
x=\frac{-2\sqrt{14}-8}{2}
x=\frac{-8±2\sqrt{14}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{14} ni ayirish.
x=-\sqrt{14}-4
-8-2\sqrt{14} ni 2 ga bo'lish.
x=\sqrt{14}-4 x=-\sqrt{14}-4
Tenglama yechildi.
x^{2}+8x+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+8x+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
x^{2}+8x=-2
O‘zidan 2 ayirilsa 0 qoladi.
x^{2}+8x+4^{2}=-2+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=-2+16
4 kvadratini chiqarish.
x^{2}+8x+16=14
-2 ni 16 ga qo'shish.
\left(x+4\right)^{2}=14
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=\sqrt{14} x+4=-\sqrt{14}
Qisqartirish.
x=\sqrt{14}-4 x=-\sqrt{14}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
x^{2}+8x+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\times 2}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va 2 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\times 2}}{2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{56}}{2}
64 ni -8 ga qo'shish.
x=\frac{-8±2\sqrt{14}}{2}
56 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{14}-8}{2}
x=\frac{-8±2\sqrt{14}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{14} ga qo'shish.
x=\sqrt{14}-4
-8+2\sqrt{14} ni 2 ga bo'lish.
x=\frac{-2\sqrt{14}-8}{2}
x=\frac{-8±2\sqrt{14}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{14} ni ayirish.
x=-\sqrt{14}-4
-8-2\sqrt{14} ni 2 ga bo'lish.
x=\sqrt{14}-4 x=-\sqrt{14}-4
Tenglama yechildi.
x^{2}+8x+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+8x+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
x^{2}+8x=-2
O‘zidan 2 ayirilsa 0 qoladi.
x^{2}+8x+4^{2}=-2+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=-2+16
4 kvadratini chiqarish.
x^{2}+8x+16=14
-2 ni 16 ga qo'shish.
\left(x+4\right)^{2}=14
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=\sqrt{14} x+4=-\sqrt{14}
Qisqartirish.
x=\sqrt{14}-4 x=-\sqrt{14}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.