Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+7x-12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{7^{2}-4\left(-12\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 7 ni b va -12 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\left(-12\right)}}{2}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49+48}}{2}
-4 ni -12 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{97}}{2}
49 ni 48 ga qo'shish.
x=\frac{\sqrt{97}-7}{2}
x=\frac{-7±\sqrt{97}}{2} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{97} ga qo'shish.
x=\frac{-\sqrt{97}-7}{2}
x=\frac{-7±\sqrt{97}}{2} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{97} ni ayirish.
x=\frac{\sqrt{97}-7}{2} x=\frac{-\sqrt{97}-7}{2}
Tenglama yechildi.
x^{2}+7x-12=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+7x-12-\left(-12\right)=-\left(-12\right)
12 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+7x=-\left(-12\right)
O‘zidan -12 ayirilsa 0 qoladi.
x^{2}+7x=12
0 dan -12 ni ayirish.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=12+\left(\frac{7}{2}\right)^{2}
7 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{2} olish uchun. Keyin, \frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+7x+\frac{49}{4}=12+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{2} kvadratini chiqarish.
x^{2}+7x+\frac{49}{4}=\frac{97}{4}
12 ni \frac{49}{4} ga qo'shish.
\left(x+\frac{7}{2}\right)^{2}=\frac{97}{4}
x^{2}+7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{97}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{2}=\frac{\sqrt{97}}{2} x+\frac{7}{2}=-\frac{\sqrt{97}}{2}
Qisqartirish.
x=\frac{\sqrt{97}-7}{2} x=\frac{-\sqrt{97}-7}{2}
Tenglamaning ikkala tarafidan \frac{7}{2} ni ayirish.