Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+7x-4x=20
Ikkala tarafdan 4x ni ayirish.
x^{2}+3x=20
3x ni olish uchun 7x va -4x ni birlashtirish.
x^{2}+3x-20=0
Ikkala tarafdan 20 ni ayirish.
x=\frac{-3±\sqrt{3^{2}-4\left(-20\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 3 ni b va -20 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-20\right)}}{2}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+80}}{2}
-4 ni -20 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{89}}{2}
9 ni 80 ga qo'shish.
x=\frac{\sqrt{89}-3}{2}
x=\frac{-3±\sqrt{89}}{2} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{89} ga qo'shish.
x=\frac{-\sqrt{89}-3}{2}
x=\frac{-3±\sqrt{89}}{2} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{89} ni ayirish.
x=\frac{\sqrt{89}-3}{2} x=\frac{-\sqrt{89}-3}{2}
Tenglama yechildi.
x^{2}+7x-4x=20
Ikkala tarafdan 4x ni ayirish.
x^{2}+3x=20
3x ni olish uchun 7x va -4x ni birlashtirish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=20+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=20+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=\frac{89}{4}
20 ni \frac{9}{4} ga qo'shish.
\left(x+\frac{3}{2}\right)^{2}=\frac{89}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{89}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{\sqrt{89}}{2} x+\frac{3}{2}=-\frac{\sqrt{89}}{2}
Qisqartirish.
x=\frac{\sqrt{89}-3}{2} x=\frac{-\sqrt{89}-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.