Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+67-18x=0
Ikkala tarafdan 18x ni ayirish.
x^{2}-18x+67=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 67}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -18 ni b va 67 ni c bilan almashtiring.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 67}}{2}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{324-268}}{2}
-4 ni 67 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{56}}{2}
324 ni -268 ga qo'shish.
x=\frac{-\left(-18\right)±2\sqrt{14}}{2}
56 ning kvadrat ildizini chiqarish.
x=\frac{18±2\sqrt{14}}{2}
-18 ning teskarisi 18 ga teng.
x=\frac{2\sqrt{14}+18}{2}
x=\frac{18±2\sqrt{14}}{2} tenglamasini yeching, bunda ± musbat. 18 ni 2\sqrt{14} ga qo'shish.
x=\sqrt{14}+9
18+2\sqrt{14} ni 2 ga bo'lish.
x=\frac{18-2\sqrt{14}}{2}
x=\frac{18±2\sqrt{14}}{2} tenglamasini yeching, bunda ± manfiy. 18 dan 2\sqrt{14} ni ayirish.
x=9-\sqrt{14}
18-2\sqrt{14} ni 2 ga bo'lish.
x=\sqrt{14}+9 x=9-\sqrt{14}
Tenglama yechildi.
x^{2}+67-18x=0
Ikkala tarafdan 18x ni ayirish.
x^{2}-18x=-67
Ikkala tarafdan 67 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-18x+\left(-9\right)^{2}=-67+\left(-9\right)^{2}
-18 ni bo‘lish, x shartining koeffitsienti, 2 ga -9 olish uchun. Keyin, -9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-18x+81=-67+81
-9 kvadratini chiqarish.
x^{2}-18x+81=14
-67 ni 81 ga qo'shish.
\left(x-9\right)^{2}=14
x^{2}-18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-9\right)^{2}}=\sqrt{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-9=\sqrt{14} x-9=-\sqrt{14}
Qisqartirish.
x=\sqrt{14}+9 x=9-\sqrt{14}
9 ni tenglamaning ikkala tarafiga qo'shish.