Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+64x+8=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-64±\sqrt{64^{2}-4\times 8}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-64±\sqrt{4096-4\times 8}}{2}
64 kvadratini chiqarish.
x=\frac{-64±\sqrt{4096-32}}{2}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-64±\sqrt{4064}}{2}
4096 ni -32 ga qo'shish.
x=\frac{-64±4\sqrt{254}}{2}
4064 ning kvadrat ildizini chiqarish.
x=\frac{4\sqrt{254}-64}{2}
x=\frac{-64±4\sqrt{254}}{2} tenglamasini yeching, bunda ± musbat. -64 ni 4\sqrt{254} ga qo'shish.
x=2\sqrt{254}-32
-64+4\sqrt{254} ni 2 ga bo'lish.
x=\frac{-4\sqrt{254}-64}{2}
x=\frac{-64±4\sqrt{254}}{2} tenglamasini yeching, bunda ± manfiy. -64 dan 4\sqrt{254} ni ayirish.
x=-2\sqrt{254}-32
-64-4\sqrt{254} ni 2 ga bo'lish.
x^{2}+64x+8=\left(x-\left(2\sqrt{254}-32\right)\right)\left(x-\left(-2\sqrt{254}-32\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -32+2\sqrt{254} ga va x_{2} uchun -32-2\sqrt{254} ga bo‘ling.