Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+6x=8
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+6x-8=8-8
Tenglamaning ikkala tarafidan 8 ni ayirish.
x^{2}+6x-8=0
O‘zidan 8 ayirilsa 0 qoladi.
x=\frac{-6±\sqrt{6^{2}-4\left(-8\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va -8 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\left(-8\right)}}{2}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+32}}{2}
-4 ni -8 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{68}}{2}
36 ni 32 ga qo'shish.
x=\frac{-6±2\sqrt{17}}{2}
68 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{17}-6}{2}
x=\frac{-6±2\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{17} ga qo'shish.
x=\sqrt{17}-3
-6+2\sqrt{17} ni 2 ga bo'lish.
x=\frac{-2\sqrt{17}-6}{2}
x=\frac{-6±2\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{17} ni ayirish.
x=-\sqrt{17}-3
-6-2\sqrt{17} ni 2 ga bo'lish.
x=\sqrt{17}-3 x=-\sqrt{17}-3
Tenglama yechildi.
x^{2}+6x=8
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+6x+3^{2}=8+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=8+9
3 kvadratini chiqarish.
x^{2}+6x+9=17
8 ni 9 ga qo'shish.
\left(x+3\right)^{2}=17
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{17}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=\sqrt{17} x+3=-\sqrt{17}
Qisqartirish.
x=\sqrt{17}-3 x=-\sqrt{17}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
x^{2}+6x=8
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+6x-8=8-8
Tenglamaning ikkala tarafidan 8 ni ayirish.
x^{2}+6x-8=0
O‘zidan 8 ayirilsa 0 qoladi.
x=\frac{-6±\sqrt{6^{2}-4\left(-8\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va -8 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\left(-8\right)}}{2}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+32}}{2}
-4 ni -8 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{68}}{2}
36 ni 32 ga qo'shish.
x=\frac{-6±2\sqrt{17}}{2}
68 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{17}-6}{2}
x=\frac{-6±2\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{17} ga qo'shish.
x=\sqrt{17}-3
-6+2\sqrt{17} ni 2 ga bo'lish.
x=\frac{-2\sqrt{17}-6}{2}
x=\frac{-6±2\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{17} ni ayirish.
x=-\sqrt{17}-3
-6-2\sqrt{17} ni 2 ga bo'lish.
x=\sqrt{17}-3 x=-\sqrt{17}-3
Tenglama yechildi.
x^{2}+6x=8
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+6x+3^{2}=8+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=8+9
3 kvadratini chiqarish.
x^{2}+6x+9=17
8 ni 9 ga qo'shish.
\left(x+3\right)^{2}=17
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{17}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=\sqrt{17} x+3=-\sqrt{17}
Qisqartirish.
x=\sqrt{17}-3 x=-\sqrt{17}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.