Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+6x+9=12
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+6x+9-12=12-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
x^{2}+6x+9-12=0
O‘zidan 12 ayirilsa 0 qoladi.
x^{2}+6x-3=0
9 dan 12 ni ayirish.
x=\frac{-6±\sqrt{6^{2}-4\left(-3\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va -3 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\left(-3\right)}}{2}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+12}}{2}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{48}}{2}
36 ni 12 ga qo'shish.
x=\frac{-6±4\sqrt{3}}{2}
48 ning kvadrat ildizini chiqarish.
x=\frac{4\sqrt{3}-6}{2}
x=\frac{-6±4\sqrt{3}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 4\sqrt{3} ga qo'shish.
x=2\sqrt{3}-3
-6+4\sqrt{3} ni 2 ga bo'lish.
x=\frac{-4\sqrt{3}-6}{2}
x=\frac{-6±4\sqrt{3}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 4\sqrt{3} ni ayirish.
x=-2\sqrt{3}-3
-6-4\sqrt{3} ni 2 ga bo'lish.
x=2\sqrt{3}-3 x=-2\sqrt{3}-3
Tenglama yechildi.
\left(x+3\right)^{2}=12
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{12}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=2\sqrt{3} x+3=-2\sqrt{3}
Qisqartirish.
x=2\sqrt{3}-3 x=-2\sqrt{3}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.